In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
Abstract Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagno...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d810cad4f2b46a1aaf7b89ba641e8bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3d810cad4f2b46a1aaf7b89ba641e8bb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3d810cad4f2b46a1aaf7b89ba641e8bb2021-12-02T14:28:18ZIn silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-1910.1038/s41598-021-83730-y2045-2322https://doaj.org/article/3d810cad4f2b46a1aaf7b89ba641e8bb2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83730-yhttps://doaj.org/toc/2045-2322Abstract Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples).Isabelle Q. PhanSandhya SubramanianDavid KimMichael MurphyDeleah PettieLauren CarterIvan AnishchenkoLynn K. BarrettJustin CraigLogan TilleryRoger ShekWhitney E. HarringtonDavid M. KoelleAnna WaldDavid VeeslerNeil KingJim BoonyaratanakornkitNina IsoherranenAlexander L. GreningerKeith R. JeromeHelen ChuBart StakerLance StewartPeter J. MylerWesley C. Van VoorhisNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Isabelle Q. Phan Sandhya Subramanian David Kim Michael Murphy Deleah Pettie Lauren Carter Ivan Anishchenko Lynn K. Barrett Justin Craig Logan Tillery Roger Shek Whitney E. Harrington David M. Koelle Anna Wald David Veesler Neil King Jim Boonyaratanakornkit Nina Isoherranen Alexander L. Greninger Keith R. Jerome Helen Chu Bart Staker Lance Stewart Peter J. Myler Wesley C. Van Voorhis In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19 |
description |
Abstract Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples). |
format |
article |
author |
Isabelle Q. Phan Sandhya Subramanian David Kim Michael Murphy Deleah Pettie Lauren Carter Ivan Anishchenko Lynn K. Barrett Justin Craig Logan Tillery Roger Shek Whitney E. Harrington David M. Koelle Anna Wald David Veesler Neil King Jim Boonyaratanakornkit Nina Isoherranen Alexander L. Greninger Keith R. Jerome Helen Chu Bart Staker Lance Stewart Peter J. Myler Wesley C. Van Voorhis |
author_facet |
Isabelle Q. Phan Sandhya Subramanian David Kim Michael Murphy Deleah Pettie Lauren Carter Ivan Anishchenko Lynn K. Barrett Justin Craig Logan Tillery Roger Shek Whitney E. Harrington David M. Koelle Anna Wald David Veesler Neil King Jim Boonyaratanakornkit Nina Isoherranen Alexander L. Greninger Keith R. Jerome Helen Chu Bart Staker Lance Stewart Peter J. Myler Wesley C. Van Voorhis |
author_sort |
Isabelle Q. Phan |
title |
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19 |
title_short |
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19 |
title_full |
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19 |
title_fullStr |
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19 |
title_full_unstemmed |
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19 |
title_sort |
in silico detection of sars-cov-2 specific b-cell epitopes and validation in elisa for serological diagnosis of covid-19 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3d810cad4f2b46a1aaf7b89ba641e8bb |
work_keys_str_mv |
AT isabelleqphan insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT sandhyasubramanian insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT davidkim insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT michaelmurphy insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT deleahpettie insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT laurencarter insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT ivananishchenko insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT lynnkbarrett insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT justincraig insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT logantillery insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT rogershek insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT whitneyeharrington insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT davidmkoelle insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT annawald insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT davidveesler insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT neilking insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT jimboonyaratanakornkit insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT ninaisoherranen insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT alexanderlgreninger insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT keithrjerome insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT helenchu insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT bartstaker insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT lancestewart insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT peterjmyler insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 AT wesleycvanvoorhis insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19 |
_version_ |
1718391245290602496 |