In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19

Abstract Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagno...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Isabelle Q. Phan, Sandhya Subramanian, David Kim, Michael Murphy, Deleah Pettie, Lauren Carter, Ivan Anishchenko, Lynn K. Barrett, Justin Craig, Logan Tillery, Roger Shek, Whitney E. Harrington, David M. Koelle, Anna Wald, David Veesler, Neil King, Jim Boonyaratanakornkit, Nina Isoherranen, Alexander L. Greninger, Keith R. Jerome, Helen Chu, Bart Staker, Lance Stewart, Peter J. Myler, Wesley C. Van Voorhis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3d810cad4f2b46a1aaf7b89ba641e8bb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3d810cad4f2b46a1aaf7b89ba641e8bb
record_format dspace
spelling oai:doaj.org-article:3d810cad4f2b46a1aaf7b89ba641e8bb2021-12-02T14:28:18ZIn silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-1910.1038/s41598-021-83730-y2045-2322https://doaj.org/article/3d810cad4f2b46a1aaf7b89ba641e8bb2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83730-yhttps://doaj.org/toc/2045-2322Abstract Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples).Isabelle Q. PhanSandhya SubramanianDavid KimMichael MurphyDeleah PettieLauren CarterIvan AnishchenkoLynn K. BarrettJustin CraigLogan TilleryRoger ShekWhitney E. HarringtonDavid M. KoelleAnna WaldDavid VeeslerNeil KingJim BoonyaratanakornkitNina IsoherranenAlexander L. GreningerKeith R. JeromeHelen ChuBart StakerLance StewartPeter J. MylerWesley C. Van VoorhisNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Isabelle Q. Phan
Sandhya Subramanian
David Kim
Michael Murphy
Deleah Pettie
Lauren Carter
Ivan Anishchenko
Lynn K. Barrett
Justin Craig
Logan Tillery
Roger Shek
Whitney E. Harrington
David M. Koelle
Anna Wald
David Veesler
Neil King
Jim Boonyaratanakornkit
Nina Isoherranen
Alexander L. Greninger
Keith R. Jerome
Helen Chu
Bart Staker
Lance Stewart
Peter J. Myler
Wesley C. Van Voorhis
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
description Abstract Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples).
format article
author Isabelle Q. Phan
Sandhya Subramanian
David Kim
Michael Murphy
Deleah Pettie
Lauren Carter
Ivan Anishchenko
Lynn K. Barrett
Justin Craig
Logan Tillery
Roger Shek
Whitney E. Harrington
David M. Koelle
Anna Wald
David Veesler
Neil King
Jim Boonyaratanakornkit
Nina Isoherranen
Alexander L. Greninger
Keith R. Jerome
Helen Chu
Bart Staker
Lance Stewart
Peter J. Myler
Wesley C. Van Voorhis
author_facet Isabelle Q. Phan
Sandhya Subramanian
David Kim
Michael Murphy
Deleah Pettie
Lauren Carter
Ivan Anishchenko
Lynn K. Barrett
Justin Craig
Logan Tillery
Roger Shek
Whitney E. Harrington
David M. Koelle
Anna Wald
David Veesler
Neil King
Jim Boonyaratanakornkit
Nina Isoherranen
Alexander L. Greninger
Keith R. Jerome
Helen Chu
Bart Staker
Lance Stewart
Peter J. Myler
Wesley C. Van Voorhis
author_sort Isabelle Q. Phan
title In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_short In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_full In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_fullStr In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_full_unstemmed In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_sort in silico detection of sars-cov-2 specific b-cell epitopes and validation in elisa for serological diagnosis of covid-19
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3d810cad4f2b46a1aaf7b89ba641e8bb
work_keys_str_mv AT isabelleqphan insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT sandhyasubramanian insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT davidkim insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT michaelmurphy insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT deleahpettie insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT laurencarter insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT ivananishchenko insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT lynnkbarrett insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT justincraig insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT logantillery insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT rogershek insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT whitneyeharrington insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT davidmkoelle insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT annawald insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT davidveesler insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT neilking insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT jimboonyaratanakornkit insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT ninaisoherranen insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT alexanderlgreninger insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT keithrjerome insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT helenchu insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT bartstaker insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT lancestewart insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT peterjmyler insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT wesleycvanvoorhis insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
_version_ 1718391245290602496