Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts
Abstract Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD+) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer’s...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d994a935b6545bf8db9f5135a0b2f0d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3d994a935b6545bf8db9f5135a0b2f0d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3d994a935b6545bf8db9f5135a0b2f0d2021-12-02T15:09:37ZReversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts10.1038/s41598-019-47582-x2045-2322https://doaj.org/article/3d994a935b6545bf8db9f5135a0b2f0d2019-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-47582-xhttps://doaj.org/toc/2045-2322Abstract Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD+) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer’s disease (AD) is associated with oxidative shifts, decreases in anti-oxidant protection and dysfunction of mitochondria. Here, we examined the flexibility of mitochondrial-specific free NADH in live neurons from non-transgenic (NTg) or triple transgenic AD-like mice (3xTg-AD) of different ages under an imposed extracellular Cys/CySS oxidative or reductive condition. We used phasor fluorescence lifetime imaging microscopy (FLIM) to distinguish free and bound NADH in mitochondria, nuclei and cytoplasm. Under an external oxidative stress, a lower capacity for maintaining mitochondrial free NADH levels was found in old compared to young neurons and a further decline with genetic load. Remarkably, an imposed Cys/CySS reductive state rejuvenated the mitochondrial free NADH levels of old NTg neurons by 71% and old 3xTg-AD neurons by 89% to levels corresponding to the young neurons. Using FLIM as a non-invasive approach, we were able to measure the reversibility of aging subcellular free NADH levels in live neurons. Our results suggest a potential reductive treatment to reverse the loss of free NADH in old and Alzheimer’s neurons.Yue DongSara SameniMichelle A. DigmanGregory J. BrewerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-13 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yue Dong Sara Sameni Michelle A. Digman Gregory J. Brewer Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts |
description |
Abstract Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD+) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer’s disease (AD) is associated with oxidative shifts, decreases in anti-oxidant protection and dysfunction of mitochondria. Here, we examined the flexibility of mitochondrial-specific free NADH in live neurons from non-transgenic (NTg) or triple transgenic AD-like mice (3xTg-AD) of different ages under an imposed extracellular Cys/CySS oxidative or reductive condition. We used phasor fluorescence lifetime imaging microscopy (FLIM) to distinguish free and bound NADH in mitochondria, nuclei and cytoplasm. Under an external oxidative stress, a lower capacity for maintaining mitochondrial free NADH levels was found in old compared to young neurons and a further decline with genetic load. Remarkably, an imposed Cys/CySS reductive state rejuvenated the mitochondrial free NADH levels of old NTg neurons by 71% and old 3xTg-AD neurons by 89% to levels corresponding to the young neurons. Using FLIM as a non-invasive approach, we were able to measure the reversibility of aging subcellular free NADH levels in live neurons. Our results suggest a potential reductive treatment to reverse the loss of free NADH in old and Alzheimer’s neurons. |
format |
article |
author |
Yue Dong Sara Sameni Michelle A. Digman Gregory J. Brewer |
author_facet |
Yue Dong Sara Sameni Michelle A. Digman Gregory J. Brewer |
author_sort |
Yue Dong |
title |
Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts |
title_short |
Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts |
title_full |
Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts |
title_fullStr |
Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts |
title_full_unstemmed |
Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts |
title_sort |
reversibility of age-related oxidized free nadh redox states in alzheimer’s disease neurons by imposed external cys/cyss redox shifts |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/3d994a935b6545bf8db9f5135a0b2f0d |
work_keys_str_mv |
AT yuedong reversibilityofagerelatedoxidizedfreenadhredoxstatesinalzheimersdiseaseneuronsbyimposedexternalcyscyssredoxshifts AT sarasameni reversibilityofagerelatedoxidizedfreenadhredoxstatesinalzheimersdiseaseneuronsbyimposedexternalcyscyssredoxshifts AT michelleadigman reversibilityofagerelatedoxidizedfreenadhredoxstatesinalzheimersdiseaseneuronsbyimposedexternalcyscyssredoxshifts AT gregoryjbrewer reversibilityofagerelatedoxidizedfreenadhredoxstatesinalzheimersdiseaseneuronsbyimposedexternalcyscyssredoxshifts |
_version_ |
1718387807938936832 |