Determination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations
An estimation of the elastic-plastic stress state using elasticity-theoretical input data is an essential part of the service life estimation with the local strain approach in general and a German guideline based on it, in particular. This guideline uses two different notch root approximations (an e...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3db04c40d8134e90b6c17079626acaa3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3db04c40d8134e90b6c17079626acaa3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3db04c40d8134e90b6c17079626acaa32021-11-11T15:21:49ZDetermination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations10.3390/app1121103392076-3417https://doaj.org/article/3db04c40d8134e90b6c17079626acaa32021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10339https://doaj.org/toc/2076-3417An estimation of the elastic-plastic stress state using elasticity-theoretical input data is an essential part of the service life estimation with the local strain approach in general and a German guideline based on it, in particular. This guideline uses two different notch root approximations (an extended version of Neuber’s rule and an approach according to Seeger and Beste) for this estimation. Both require the implementation of Newton’s method to be iteratively solved. However, many options are left open to the user concerning implementation in program code. This paper discusses ways in which notch root approximation methods can be implemented efficiently for use in software systems and elaborates an application recommendation. The following aspects and their influence on the computational accuracy and performance of Newton’s method are considered in detail: influence of the formulation of the root finding problem, determination of the derivative required for Newton’s method and influence of the termination criterion. The investigation shows that the advice given in the abovementioned guideline indeed leads to a conservative implementation. By carefully considering the investigated aspects, however, the computational performance can be increased by approximately a factor of 2–3 without influencing the accuracy of the service life estimation.Ralf BurghardtLukas MasendorfMichael WächterAlfons EsdertsMDPI AGarticleNeuber’s rulefatigue life calculationnotch strainsnotch stressesfatigue of materialslocal strain approachTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10339, p 10339 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Neuber’s rule fatigue life calculation notch strains notch stresses fatigue of materials local strain approach Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
Neuber’s rule fatigue life calculation notch strains notch stresses fatigue of materials local strain approach Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Ralf Burghardt Lukas Masendorf Michael Wächter Alfons Esderts Determination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations |
description |
An estimation of the elastic-plastic stress state using elasticity-theoretical input data is an essential part of the service life estimation with the local strain approach in general and a German guideline based on it, in particular. This guideline uses two different notch root approximations (an extended version of Neuber’s rule and an approach according to Seeger and Beste) for this estimation. Both require the implementation of Newton’s method to be iteratively solved. However, many options are left open to the user concerning implementation in program code. This paper discusses ways in which notch root approximation methods can be implemented efficiently for use in software systems and elaborates an application recommendation. The following aspects and their influence on the computational accuracy and performance of Newton’s method are considered in detail: influence of the formulation of the root finding problem, determination of the derivative required for Newton’s method and influence of the termination criterion. The investigation shows that the advice given in the abovementioned guideline indeed leads to a conservative implementation. By carefully considering the investigated aspects, however, the computational performance can be increased by approximately a factor of 2–3 without influencing the accuracy of the service life estimation. |
format |
article |
author |
Ralf Burghardt Lukas Masendorf Michael Wächter Alfons Esderts |
author_facet |
Ralf Burghardt Lukas Masendorf Michael Wächter Alfons Esderts |
author_sort |
Ralf Burghardt |
title |
Determination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations |
title_short |
Determination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations |
title_full |
Determination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations |
title_fullStr |
Determination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations |
title_full_unstemmed |
Determination of Local Stresses and Strains within the Notch Strain Approach: Efficient Implementation of Notch Root Approximations |
title_sort |
determination of local stresses and strains within the notch strain approach: efficient implementation of notch root approximations |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/3db04c40d8134e90b6c17079626acaa3 |
work_keys_str_mv |
AT ralfburghardt determinationoflocalstressesandstrainswithinthenotchstrainapproachefficientimplementationofnotchrootapproximations AT lukasmasendorf determinationoflocalstressesandstrainswithinthenotchstrainapproachefficientimplementationofnotchrootapproximations AT michaelwachter determinationoflocalstressesandstrainswithinthenotchstrainapproachefficientimplementationofnotchrootapproximations AT alfonsesderts determinationoflocalstressesandstrainswithinthenotchstrainapproachefficientimplementationofnotchrootapproximations |
_version_ |
1718435360992657408 |