When Similarity Becomes Opposition: Synonyms and Antonyms Discrimination in DSMs
This paper analyzes the concept of opposition and describes a fully unsupervised method for its automatic discrimination from near-synonymy in Distributional Semantic Models (DSMs). The discriminating method is based on the hypothesis that, even though both near-synonyms and opposites are mostly dis...
Guardado en:
Autores principales: | Enrico Santus, Qin Lu, Alessandro Lenci, Chu-Ren Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3db40347814b4e6fa403e75647f18eed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Negated Adjectives and Antonyms in Distributional Semantics: not similar?
por: Laura Aina, et al.
Publicado: (2019) -
Event Knowledge in Compositional Distributional Semantics
por: Ludovica Pannitto, et al.
Publicado: (2019) -
Learning Affect with Distributional Semantic Models
por: Lucia C. Passaro, et al.
Publicado: (2017) -
Refining the Distributional Inclusion Hypothesis for Unsupervised Hypernym Identification
por: Ludovica Pannitto, et al.
Publicado: (2018) -
Finding the Neural Net: Deep-learning Idiom Type Identification from Distributional Vectors
por: Yuri Bizzoni, et al.
Publicado: (2018)