Local bi-fidelity field approximation with Knowledge Based Neural Networks for Computational Fluid Dynamics
Abstract This work presents a machine learning based method for bi-fidelity modelling. The method, a Knowledge Based Neural Network (KBaNN), performs a local, additive correction to the outputs of a coarse computational model and can be used to emulate either experimental data or the output of a mor...
Enregistré dans:
Auteurs principaux: | Nick Pepper, Audrey Gaymann, Sanjiv Sharma, Francesco Montomoli |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3db603d25349419baf2ed4038d973d20 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Approximate Bayesian computation.
par: Mikael Sunnåker, et autres
Publié: (2013) -
Approximate analog computing with metatronic circuits
par: Mario Miscuglio, et autres
Publié: (2021) -
Neural sensitization improves encoding fidelity in the primate retina
par: Todd R. Appleby, et autres
Publié: (2019) -
Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws
par: Matteo Gorgone, et autres
Publié: (2021) - Computers & fluids