Local bi-fidelity field approximation with Knowledge Based Neural Networks for Computational Fluid Dynamics
Abstract This work presents a machine learning based method for bi-fidelity modelling. The method, a Knowledge Based Neural Network (KBaNN), performs a local, additive correction to the outputs of a coarse computational model and can be used to emulate either experimental data or the output of a mor...
Guardado en:
Autores principales: | Nick Pepper, Audrey Gaymann, Sanjiv Sharma, Francesco Montomoli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3db603d25349419baf2ed4038d973d20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Approximate Bayesian computation.
por: Mikael Sunnåker, et al.
Publicado: (2013) -
Approximate analog computing with metatronic circuits
por: Mario Miscuglio, et al.
Publicado: (2021) -
Neural sensitization improves encoding fidelity in the primate retina
por: Todd R. Appleby, et al.
Publicado: (2019) -
Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws
por: Matteo Gorgone, et al.
Publicado: (2021) - Computers & fluids