Dynamical behaviour of shallow water waves and solitary wave solutions of the Dullin-Gottwald-Holm dynamical system
In this article, we recover a variety of new families of shallow water wave and solitary wave solutions to the (1+1)-dimensional Dullin “Gottwald” Holm (DGH) system by employing new extended direct algebraic method (NEDAM). The derived results are obtained in diverse hyperbolic and periodic function...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3dbac7b79e384df3981309a7682fc0bd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this article, we recover a variety of new families of shallow water wave and solitary wave solutions to the (1+1)-dimensional Dullin “Gottwald” Holm (DGH) system by employing new extended direct algebraic method (NEDAM). The derived results are obtained in diverse hyperbolic and periodic function forms. The attained solutions are new addition in the study of solitary wave and shallow water wave theory. In addition, 3-dimensional, 2-dimensional, and contour graphs of secured results are plotted in order to observe their dynamics with the choices of involved parameters. On the basis of achieved outcomes, we may claim that the proposed computational method is direct, dynamics, well organized, and will be useful for solving the more complicated nonlinear problems in diverse areas together with symbolic computations. |
---|