Network dynamics-based cancer panel stratification for systemic prediction of anticancer drug response
Genomic alterations underlie the variability of drug responses between cancers, but our mechanistic understanding is limited. Here the authors use the p53 network to study how rewiring of signalling networks by genomic alterations impact their dynamic response to pharmacological perturbation.
Guardado en:
Autores principales: | Minsoo Choi, Jue Shi, Yanting Zhu, Ruizhen Yang, Kwang-Hyun Cho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3dd24c28dfe74c3bac266661964850eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ADRML: anticancer drug response prediction using manifold learning
por: Fatemeh Ahmadi Moughari, et al.
Publicado: (2020) -
Author Correction: ADRML: anticancer drug response prediction using manifold learning
por: Fatemeh Ahmadi Moughari, et al.
Publicado: (2020) -
Identification of anticancer drug target genes using an outside competitive dynamics model on cancer signaling networks
por: Tien-Dzung Tran, et al.
Publicado: (2021) -
Improved risk stratification in prevention by use of a panel of selected circulating microRNAs
por: Till Keller, et al.
Publicado: (2017) -
Anticancer Platinum Drugs Update
por: Giuliano Ciarimboli
Publicado: (2021)