New Fractional Dynamic Inequalities via Conformable Delta Derivative on Arbitrary Time Scales

Building on the work of Josip Pečarić in 2013 and 1982 and on the work of Srivastava in 2017. We prove some new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmed A. El-Deeb, Hijaz Ahmad, Jan Awrejcewicz
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3de11f4e239944e5b1ca8714b0416f71
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Building on the work of Josip Pečarić in 2013 and 1982 and on the work of Srivastava in 2017. We prove some new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-conformable dynamic inequalities of Steffensen-type on time scales. In the case when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we obtain some well-known time scale inequalities due to Steffensen inequalities. For some specific time scales, we further show some relevant inequalities as special cases: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-conformable integral inequalities and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-conformable discrete inequalities. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.