A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation

In this article, a hybrid Haar wavelet collocation method (HWCM) is proposed for the ill-posed inverse problem with unknown source control parameters. Applying numerical techniques to such problems is a challenging task due to the presence of nonlinear terms, unknown control parameter sources along...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahsan Muhammad, Lin Shanwei, Ahmad Masood, Nisar Muhammad, Ahmad Imtiaz, Ahmed Hijaz, Liu Xuan
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/3df1714c534a4530bc344dee9c033d20
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3df1714c534a4530bc344dee9c033d20
record_format dspace
spelling oai:doaj.org-article:3df1714c534a4530bc344dee9c033d202021-12-05T14:11:02ZA Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation2391-547110.1515/phys-2021-0080https://doaj.org/article/3df1714c534a4530bc344dee9c033d202021-11-01T00:00:00Zhttps://doi.org/10.1515/phys-2021-0080https://doaj.org/toc/2391-5471In this article, a hybrid Haar wavelet collocation method (HWCM) is proposed for the ill-posed inverse problem with unknown source control parameters. Applying numerical techniques to such problems is a challenging task due to the presence of nonlinear terms, unknown control parameter sources along the solution inside the given region. To find the numerical solution, derivatives are discretized adopting implicit finite-difference scheme and Haar wavelets. The computational stability and theoretical rate of convergence of the proposed HWCM are discussed in detail. Two numerical experiments are incorporated to show the well-condition behavior of the matrix obtained from HWCM and hence not required to supplement some regularization procedures. Moreover, the numerical solutions of the considered experiments illustrate the reliability, suitability, and correctness of HWCM.Ahsan MuhammadLin ShanweiAhmad MasoodNisar MuhammadAhmad ImtiazAhmed HijazLiu XuanDe Gruyterarticlenonlinear ill-posed pdehaar waveletsstabilitycondition numberPhysicsQC1-999ENOpen Physics, Vol 19, Iss 1, Pp 722-734 (2021)
institution DOAJ
collection DOAJ
language EN
topic nonlinear ill-posed pde
haar wavelets
stability
condition number
Physics
QC1-999
spellingShingle nonlinear ill-posed pde
haar wavelets
stability
condition number
Physics
QC1-999
Ahsan Muhammad
Lin Shanwei
Ahmad Masood
Nisar Muhammad
Ahmad Imtiaz
Ahmed Hijaz
Liu Xuan
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
description In this article, a hybrid Haar wavelet collocation method (HWCM) is proposed for the ill-posed inverse problem with unknown source control parameters. Applying numerical techniques to such problems is a challenging task due to the presence of nonlinear terms, unknown control parameter sources along the solution inside the given region. To find the numerical solution, derivatives are discretized adopting implicit finite-difference scheme and Haar wavelets. The computational stability and theoretical rate of convergence of the proposed HWCM are discussed in detail. Two numerical experiments are incorporated to show the well-condition behavior of the matrix obtained from HWCM and hence not required to supplement some regularization procedures. Moreover, the numerical solutions of the considered experiments illustrate the reliability, suitability, and correctness of HWCM.
format article
author Ahsan Muhammad
Lin Shanwei
Ahmad Masood
Nisar Muhammad
Ahmad Imtiaz
Ahmed Hijaz
Liu Xuan
author_facet Ahsan Muhammad
Lin Shanwei
Ahmad Masood
Nisar Muhammad
Ahmad Imtiaz
Ahmed Hijaz
Liu Xuan
author_sort Ahsan Muhammad
title A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
title_short A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
title_full A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
title_fullStr A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
title_full_unstemmed A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
title_sort haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/3df1714c534a4530bc344dee9c033d20
work_keys_str_mv AT ahsanmuhammad ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT linshanwei ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT ahmadmasood ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT nisarmuhammad ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT ahmadimtiaz ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT ahmedhijaz ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT liuxuan ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT ahsanmuhammad haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT linshanwei haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT ahmadmasood haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT nisarmuhammad haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT ahmadimtiaz haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT ahmedhijaz haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
AT liuxuan haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation
_version_ 1718371469608615936