A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
In this article, a hybrid Haar wavelet collocation method (HWCM) is proposed for the ill-posed inverse problem with unknown source control parameters. Applying numerical techniques to such problems is a challenging task due to the presence of nonlinear terms, unknown control parameter sources along...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3df1714c534a4530bc344dee9c033d20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3df1714c534a4530bc344dee9c033d20 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3df1714c534a4530bc344dee9c033d202021-12-05T14:11:02ZA Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation2391-547110.1515/phys-2021-0080https://doaj.org/article/3df1714c534a4530bc344dee9c033d202021-11-01T00:00:00Zhttps://doi.org/10.1515/phys-2021-0080https://doaj.org/toc/2391-5471In this article, a hybrid Haar wavelet collocation method (HWCM) is proposed for the ill-posed inverse problem with unknown source control parameters. Applying numerical techniques to such problems is a challenging task due to the presence of nonlinear terms, unknown control parameter sources along the solution inside the given region. To find the numerical solution, derivatives are discretized adopting implicit finite-difference scheme and Haar wavelets. The computational stability and theoretical rate of convergence of the proposed HWCM are discussed in detail. Two numerical experiments are incorporated to show the well-condition behavior of the matrix obtained from HWCM and hence not required to supplement some regularization procedures. Moreover, the numerical solutions of the considered experiments illustrate the reliability, suitability, and correctness of HWCM.Ahsan MuhammadLin ShanweiAhmad MasoodNisar MuhammadAhmad ImtiazAhmed HijazLiu XuanDe Gruyterarticlenonlinear ill-posed pdehaar waveletsstabilitycondition numberPhysicsQC1-999ENOpen Physics, Vol 19, Iss 1, Pp 722-734 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
nonlinear ill-posed pde haar wavelets stability condition number Physics QC1-999 |
spellingShingle |
nonlinear ill-posed pde haar wavelets stability condition number Physics QC1-999 Ahsan Muhammad Lin Shanwei Ahmad Masood Nisar Muhammad Ahmad Imtiaz Ahmed Hijaz Liu Xuan A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation |
description |
In this article, a hybrid Haar wavelet collocation method (HWCM) is proposed for the ill-posed inverse problem with unknown source control parameters. Applying numerical techniques to such problems is a challenging task due to the presence of nonlinear terms, unknown control parameter sources along the solution inside the given region. To find the numerical solution, derivatives are discretized adopting implicit finite-difference scheme and Haar wavelets. The computational stability and theoretical rate of convergence of the proposed HWCM are discussed in detail. Two numerical experiments are incorporated to show the well-condition behavior of the matrix obtained from HWCM and hence not required to supplement some regularization procedures. Moreover, the numerical solutions of the considered experiments illustrate the reliability, suitability, and correctness of HWCM. |
format |
article |
author |
Ahsan Muhammad Lin Shanwei Ahmad Masood Nisar Muhammad Ahmad Imtiaz Ahmed Hijaz Liu Xuan |
author_facet |
Ahsan Muhammad Lin Shanwei Ahmad Masood Nisar Muhammad Ahmad Imtiaz Ahmed Hijaz Liu Xuan |
author_sort |
Ahsan Muhammad |
title |
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation |
title_short |
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation |
title_full |
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation |
title_fullStr |
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation |
title_full_unstemmed |
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation |
title_sort |
haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/3df1714c534a4530bc344dee9c033d20 |
work_keys_str_mv |
AT ahsanmuhammad ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT linshanwei ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT ahmadmasood ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT nisarmuhammad ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT ahmadimtiaz ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT ahmedhijaz ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT liuxuan ahaarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT ahsanmuhammad haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT linshanwei haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT ahmadmasood haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT nisarmuhammad haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT ahmadimtiaz haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT ahmedhijaz haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation AT liuxuan haarwaveletbasedschemeforfindingthecontrolparameterinnonlinearinverseheatconductionequation |
_version_ |
1718371469608615936 |