Integrated multi-omics analysis of ovarian cancer using variational autoencoders
Abstract Cancer is a complex disease that deregulates cellular functions at various molecular levels (e.g., DNA, RNA, and proteins). Integrated multi-omics analysis of data from these levels is necessary to understand the aberrant cellular functions accountable for cancer and its development. In rec...
Guardado en:
Autores principales: | Muta Tah Hira, M. A. Razzaque, Claudio Angione, James Scrivens, Saladin Sawan, Mosharraf Sarkar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3df6c2d9b23b40b1a3a6c34eb8bb4cdb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Integrated multi‑omics analysis of ovarian cancer using variational autoencoders
por: Muta Tah Hira, et al.
Publicado: (2021) -
Explore Protein Conformational Space With Variational Autoencoder
por: Hao Tian, et al.
Publicado: (2021) -
Conditional Variational Autoencoder for Learned Image Reconstruction
por: Chen Zhang, et al.
Publicado: (2021) -
Adversarial Attention-Based Variational Graph Autoencoder
por: Ziqiang Weng, et al.
Publicado: (2020) -
Multi-omic Characterization of Intraspecies Variation in Laboratory and Natural Environments
por: Megan G. Behringer
Publicado: (2021)