Integrated multi-omics analysis of ovarian cancer using variational autoencoders
Abstract Cancer is a complex disease that deregulates cellular functions at various molecular levels (e.g., DNA, RNA, and proteins). Integrated multi-omics analysis of data from these levels is necessary to understand the aberrant cellular functions accountable for cancer and its development. In rec...
Enregistré dans:
Auteurs principaux: | Muta Tah Hira, M. A. Razzaque, Claudio Angione, James Scrivens, Saladin Sawan, Mosharraf Sarkar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3df6c2d9b23b40b1a3a6c34eb8bb4cdb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Integrated multi‑omics analysis of ovarian cancer using variational autoencoders
par: Muta Tah Hira, et autres
Publié: (2021) -
Explore Protein Conformational Space With Variational Autoencoder
par: Hao Tian, et autres
Publié: (2021) -
Conditional Variational Autoencoder for Learned Image Reconstruction
par: Chen Zhang, et autres
Publié: (2021) -
Adversarial Attention-Based Variational Graph Autoencoder
par: Ziqiang Weng, et autres
Publié: (2020) -
Multi-omic Characterization of Intraspecies Variation in Laboratory and Natural Environments
par: Megan G. Behringer
Publié: (2021)