Multiple machine learning approach to characterize two-dimensional nanoelectronic devices via featurization of charge fluctuation
Abstract Two-dimensional (2D) layered materials such as graphene, molybdenum disulfide (MoS2), tungsten disulfide (WSe2), and black phosphorus (BP) provide unique opportunities to identify the origin of current fluctuation, mainly arising from their large surface areas compared with those of their b...
Guardado en:
Autores principales: | Kookjin Lee, Sangjin Nam, Hyunjin Ji, Junhee Choi, Jun-Eon Jin, Yeonsu Kim, Junhong Na, Min-Yeul Ryu, Young-Hoon Cho, Hyebin Lee, Jaewoo Lee, Min-Kyu Joo, Gyu-Tae Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e001124cfbe40af8b42a1050b945580 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Critical charge fluctuations and emergent coherence in a strongly correlated excitonic insulator
por: P. A. Volkov, et al.
Publicado: (2021) -
Spin fluctuations yield zT enhancement in ferromagnets
por: Md Mobarak Hossain Polash, et al.
Publicado: (2021) -
Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes
por: Sung-Min Jung, et al.
Publicado: (2021) -
Ferromagnetism out of charge fluctuation of strongly correlated electrons in κ-(BEDT-TTF)2Hg(SCN)2Br
por: Minoru Yamashita, et al.
Publicado: (2021) -
Relaxation dynamics in multicomponent glass formers with adjustable concentration fluctuations
por: Xiao Jin, et al.
Publicado: (2021)