An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
Longitudinal data are common in biomedical research, but their analysis is often challenging. Here, the authors present an additive Gaussian process regression model specifically designed for statistical analysis of longitudinal experimental data.
Enregistré dans:
Auteurs principaux: | Lu Cheng, Siddharth Ramchandran, Tommi Vatanen, Niina Lietzén, Riitta Lahesmaa, Aki Vehtari, Harri Lähdesmäki |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3e09ccc1e58a490b9b60b5290758f8fa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The pitfalls of using Gaussian Process Regression for normative modeling.
par: Bohan Xu, et autres
Publié: (2021) -
Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot
par: Andrew West, et autres
Publié: (2021) -
Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling
par: Mohammad Hadi Dehghani, et autres
Publié: (2021) -
Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models
par: Ping Zeng, et autres
Publié: (2017) -
High precision implicit function learning for forecasting supercapacitor state of health based on Gaussian process regression
par: Jiahao Ren, et autres
Publié: (2021)