An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
Longitudinal data are common in biomedical research, but their analysis is often challenging. Here, the authors present an additive Gaussian process regression model specifically designed for statistical analysis of longitudinal experimental data.
Guardado en:
Autores principales: | Lu Cheng, Siddharth Ramchandran, Tommi Vatanen, Niina Lietzén, Riitta Lahesmaa, Aki Vehtari, Harri Lähdesmäki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e09ccc1e58a490b9b60b5290758f8fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The pitfalls of using Gaussian Process Regression for normative modeling.
por: Bohan Xu, et al.
Publicado: (2021) -
Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot
por: Andrew West, et al.
Publicado: (2021) -
Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling
por: Mohammad Hadi Dehghani, et al.
Publicado: (2021) -
Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models
por: Ping Zeng, et al.
Publicado: (2017) -
High precision implicit function learning for forecasting supercapacitor state of health based on Gaussian process regression
por: Jiahao Ren, et al.
Publicado: (2021)