An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data

Longitudinal data are common in biomedical research, but their analysis is often challenging. Here, the authors present an additive Gaussian process regression model specifically designed for statistical analysis of longitudinal experimental data.

Guardado en:
Detalles Bibliográficos
Autores principales: Lu Cheng, Siddharth Ramchandran, Tommi Vatanen, Niina Lietzén, Riitta Lahesmaa, Aki Vehtari, Harri Lähdesmäki
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/3e09ccc1e58a490b9b60b5290758f8fa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares