An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data

Longitudinal data are common in biomedical research, but their analysis is often challenging. Here, the authors present an additive Gaussian process regression model specifically designed for statistical analysis of longitudinal experimental data.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lu Cheng, Siddharth Ramchandran, Tommi Vatanen, Niina Lietzén, Riitta Lahesmaa, Aki Vehtari, Harri Lähdesmäki
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/3e09ccc1e58a490b9b60b5290758f8fa
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!