An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
Longitudinal data are common in biomedical research, but their analysis is often challenging. Here, the authors present an additive Gaussian process regression model specifically designed for statistical analysis of longitudinal experimental data.
Enregistré dans:
Auteurs principaux: | , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3e09ccc1e58a490b9b60b5290758f8fa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!