Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST
Single-cell RNA-seq (scRNA-seq) is being widely used to resolve cellular heterogeneity. Here, the authors present a cell-querying method built on a neural network-based generative model and a customized cell-to-cell similarity metric.
Enregistré dans:
Auteurs principaux: | Zhi-Jie Cao, Lin Wei, Shen Lu, De-Chang Yang, Ge Gao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3e0cf5f83c044e5689b8ee6fcaa6bccd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Genetic and scRNA-seq Analysis Reveals Distinct Cell Populations that Contribute to Salivary Gland Development and Maintenance
par: Eun-Ah Christine Song, et autres
Publié: (2018) -
Sertoli cell-only phenotype and scRNA-seq define PRAMEF12 as a factor essential for spermatogenesis in mice
par: Zhengpin Wang, et autres
Publié: (2019) -
Gene biomarker prediction in glioma by integrating scRNA-seq data and gene regulatory network
par: Guimin Qin, et autres
Publié: (2021) -
Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies
par: Ying Ma, et autres
Publié: (2020) -
scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy
par: Jennifer Ocasio, et autres
Publié: (2019)