Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments
Quantitative phase imaging suffers from a lack of specificity in label-free imaging. Here, the authors introduce Phase Imaging with Computational Specificity (PICS), a method that combines phase imaging with machine learning techniques to provide specificity in unlabeled live cells with automatic tr...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e32cf5090894b6a8edfb3919fac738d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Quantitative phase imaging suffers from a lack of specificity in label-free imaging. Here, the authors introduce Phase Imaging with Computational Specificity (PICS), a method that combines phase imaging with machine learning techniques to provide specificity in unlabeled live cells with automatic training. |
---|