Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments

Quantitative phase imaging suffers from a lack of specificity in label-free imaging. Here, the authors introduce Phase Imaging with Computational Specificity (PICS), a method that combines phase imaging with machine learning techniques to provide specificity in unlabeled live cells with automatic tr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mikhail E. Kandel, Yuchen R. He, Young Jae Lee, Taylor Hsuan-Yu Chen, Kathryn Michele Sullivan, Onur Aydin, M. Taher A. Saif, Hyunjoon Kong, Nahil Sobh, Gabriel Popescu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/3e32cf5090894b6a8edfb3919fac738d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Quantitative phase imaging suffers from a lack of specificity in label-free imaging. Here, the authors introduce Phase Imaging with Computational Specificity (PICS), a method that combines phase imaging with machine learning techniques to provide specificity in unlabeled live cells with automatic training.