Change-point detection for expected shortfall in time series
Expected shortfall (ES) is a popular risk measure and plays an important role in risk and portfolio management. Recently, change-point detection of risk measures has been attracting much attention in finance. Based on the self-normalized CUSUM statistic in Fan, Glynn and Pelger (2018) and the Wild B...
Saved in:
Main Authors: | , |
---|---|
Format: | article |
Language: | EN |
Published: |
KeAi Communications Co., Ltd.
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/3e4171cdc47246158df735e2bb78d00d |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Expected shortfall (ES) is a popular risk measure and plays an important role in risk and portfolio management. Recently, change-point detection of risk measures has been attracting much attention in finance. Based on the self-normalized CUSUM statistic in Fan, Glynn and Pelger (2018) and the Wild Binary Segmentation (WBS) algorithm in Fryzlewicz (2014), this paper proposes a variant WBS procedure to detect and estimate change points of ES in time series. The strengthened Schwarz information criterion is also introduced to determine the number of change points. Monte Carlo simulation studies are conducted to assess the finite-sample performance of our variant WBS procedure about ES in time series. An empirical application is given to illustrate the usefulness of our procedure. |
---|