Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery.
Aiming at the problem that the weak features of non-stationary vibration signals are difficult to extract under strong background noise, a multi-layer noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed. First, the original vibration signal is decomposed by EEMD,...
Guardado en:
Autores principales: | Kangping Gao, Xinxin Xu, Jiabo Li, Shengjie Jiao, Ning Shi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e4af52dca9347dba7454e4d586e988d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rotating Machinery Diagnosing in Non-Stationary Conditions with Empirical Mode Decomposition-Based Wavelet Leaders Multifractal Spectra
por: Iwona Komorska, et al.
Publicado: (2021) -
A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.
por: Huaqing Wang, et al.
Publicado: (2014) -
A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction.
por: Katerina Barnova, et al.
Publicado: (2021) -
Three-Component Microseismic Data Denoising Based on Re-Constrain Variational Mode Decomposition
por: Zhili Chen, et al.
Publicado: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021)