Macroscopically entangled light fields
Abstract A novel method of macroscopically entangled light-pair generation is presented for a quantum laser using randomness-based deterministic phase control of coherent light in a coupled Mach–Zehnder interferometer (MZI). Unlike the particle nature-based quantum correlation in conventional quantu...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e4b530552e546359be619a0b3bb8913 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract A novel method of macroscopically entangled light-pair generation is presented for a quantum laser using randomness-based deterministic phase control of coherent light in a coupled Mach–Zehnder interferometer (MZI). Unlike the particle nature-based quantum correlation in conventional quantum mechanics, the wave nature of photons is applied for collective phase control of coherent fields, resulting in a deterministically controllable nonclassical phenomenon. For the proof of principle, the entanglement between output light fields from a coupled MZI is examined using the Hong-Ou-Mandel-type anticorrelation technique, where the anticorrelation is a direct evidence of the nonclassical features in an interferometric scheme. For the generation of random phase bases between two bipartite input coherent fields, a deterministic control of opposite frequency shifts results in phase sensitive anticorrelation, which is a macroscopic quantum feature. |
---|