The impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings
Abstract Under high soil water levels, an imbalance occurs in the utilization of photosynthate between supporting vegetative growth and storage as starch. This results in a reduction in the density of dry matter in the stem and increased plant size. On the other hand, biomass yield and starch yield...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e53a1b276904d0ba5b644b78a484d18 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3e53a1b276904d0ba5b644b78a484d18 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3e53a1b276904d0ba5b644b78a484d182021-11-24T11:36:03ZThe impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings2639-669610.1002/agg2.20191https://doaj.org/article/3e53a1b276904d0ba5b644b78a484d182021-01-01T00:00:00Zhttps://doi.org/10.1002/agg2.20191https://doaj.org/toc/2639-6696Abstract Under high soil water levels, an imbalance occurs in the utilization of photosynthate between supporting vegetative growth and storage as starch. This results in a reduction in the density of dry matter in the stem and increased plant size. On the other hand, biomass yield and starch yield are considered to be low. This study examined the response of sago palm (Metroxylon sagu Rottb.) seedlings to 50 and 80% soil water levels. To determine the response of the plant, several parameters were observed during the experiment: N, P, and K uptake, leaf photosynthesis, plant morphological growth, and sugar content in plants. It was found that the sago palm was able to show good growth performance under both 50 and 80% soil water levels. However, 50% soil water level is preferable due to trends in N, P, and K uptake, leaf photosynthetic rate, morphological growth performance, and also because no loss of starch is evident in the petiole or root.Aidil AzharFitri AudiaKoki AsanoDaigo MakiharaHitoshi NaitoDaisuke SugiuraHiroshi EharaWileyarticleAgricultureSEnvironmental sciencesGE1-350ENAgrosystems, Geosciences & Environment, Vol 4, Iss 3, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Agriculture S Environmental sciences GE1-350 |
spellingShingle |
Agriculture S Environmental sciences GE1-350 Aidil Azhar Fitri Audia Koki Asano Daigo Makihara Hitoshi Naito Daisuke Sugiura Hiroshi Ehara The impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings |
description |
Abstract Under high soil water levels, an imbalance occurs in the utilization of photosynthate between supporting vegetative growth and storage as starch. This results in a reduction in the density of dry matter in the stem and increased plant size. On the other hand, biomass yield and starch yield are considered to be low. This study examined the response of sago palm (Metroxylon sagu Rottb.) seedlings to 50 and 80% soil water levels. To determine the response of the plant, several parameters were observed during the experiment: N, P, and K uptake, leaf photosynthesis, plant morphological growth, and sugar content in plants. It was found that the sago palm was able to show good growth performance under both 50 and 80% soil water levels. However, 50% soil water level is preferable due to trends in N, P, and K uptake, leaf photosynthetic rate, morphological growth performance, and also because no loss of starch is evident in the petiole or root. |
format |
article |
author |
Aidil Azhar Fitri Audia Koki Asano Daigo Makihara Hitoshi Naito Daisuke Sugiura Hiroshi Ehara |
author_facet |
Aidil Azhar Fitri Audia Koki Asano Daigo Makihara Hitoshi Naito Daisuke Sugiura Hiroshi Ehara |
author_sort |
Aidil Azhar |
title |
The impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings |
title_short |
The impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings |
title_full |
The impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings |
title_fullStr |
The impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings |
title_full_unstemmed |
The impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings |
title_sort |
impact of different soil water levels on nitrogen, phosphorus, and potassium uptake, photosynthetic performance, and sugar distribution of sago palm seedlings |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/3e53a1b276904d0ba5b644b78a484d18 |
work_keys_str_mv |
AT aidilazhar theimpactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT fitriaudia theimpactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT kokiasano theimpactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT daigomakihara theimpactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT hitoshinaito theimpactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT daisukesugiura theimpactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT hiroshiehara theimpactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT aidilazhar impactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT fitriaudia impactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT kokiasano impactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT daigomakihara impactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT hitoshinaito impactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT daisukesugiura impactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings AT hiroshiehara impactofdifferentsoilwaterlevelsonnitrogenphosphorusandpotassiumuptakephotosyntheticperformanceandsugardistributionofsagopalmseedlings |
_version_ |
1718415040039616512 |