Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection
ABSTRACT Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic a...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e606cfd06664d5bacbd165b2cacc9b5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3e606cfd06664d5bacbd165b2cacc9b5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3e606cfd06664d5bacbd165b2cacc9b52021-11-15T15:50:15ZExported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection10.1128/mBio.01538-162150-7511https://doaj.org/article/3e606cfd06664d5bacbd165b2cacc9b52016-11-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01538-16https://doaj.org/toc/2150-7511ABSTRACT Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. IMPORTANCE The malaria parasite exports hundreds of proteins into the erythrocyte compartment. However, for most of these proteins, their physiological function is unknown. In this study, we investigate two “hypothetical” proteins of the α/β-hydrolase fold family that share sequence similarity with epoxide hydrolases (EHs)—enzymes that destroy bioactive epoxides. Altering EH expression in parasite-infected erythrocytes resulted in a significant change in the epoxide fatty acids stored in the host cell. We propose that these EH enzymes may help the parasite to manipulate host blood vessel opening and inflame the vessel walls as they pass through the circulation system. Understanding how the malaria parasite interacts with its host RBCs will aid in our ability to combat this deadly disease.Natalie J. SpillmanVarun K. DalmiaDaniel E. GoldbergAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 7, Iss 5 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Natalie J. Spillman Varun K. Dalmia Daniel E. Goldberg Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection |
description |
ABSTRACT Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. IMPORTANCE The malaria parasite exports hundreds of proteins into the erythrocyte compartment. However, for most of these proteins, their physiological function is unknown. In this study, we investigate two “hypothetical” proteins of the α/β-hydrolase fold family that share sequence similarity with epoxide hydrolases (EHs)—enzymes that destroy bioactive epoxides. Altering EH expression in parasite-infected erythrocytes resulted in a significant change in the epoxide fatty acids stored in the host cell. We propose that these EH enzymes may help the parasite to manipulate host blood vessel opening and inflame the vessel walls as they pass through the circulation system. Understanding how the malaria parasite interacts with its host RBCs will aid in our ability to combat this deadly disease. |
format |
article |
author |
Natalie J. Spillman Varun K. Dalmia Daniel E. Goldberg |
author_facet |
Natalie J. Spillman Varun K. Dalmia Daniel E. Goldberg |
author_sort |
Natalie J. Spillman |
title |
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection |
title_short |
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection |
title_full |
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection |
title_fullStr |
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection |
title_full_unstemmed |
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during <named-content content-type="genus-species">Plasmodium falciparum</named-content> Infection |
title_sort |
exported epoxide hydrolases modulate erythrocyte vasoactive lipids during <named-content content-type="genus-species">plasmodium falciparum</named-content> infection |
publisher |
American Society for Microbiology |
publishDate |
2016 |
url |
https://doaj.org/article/3e606cfd06664d5bacbd165b2cacc9b5 |
work_keys_str_mv |
AT nataliejspillman exportedepoxidehydrolasesmodulateerythrocytevasoactivelipidsduringnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontentinfection AT varunkdalmia exportedepoxidehydrolasesmodulateerythrocytevasoactivelipidsduringnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontentinfection AT danielegoldberg exportedepoxidehydrolasesmodulateerythrocytevasoactivelipidsduringnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontentinfection |
_version_ |
1718427453789044736 |