PotNet: Pothole detection for autonomous vehicle system using convolutional neural network
Abstract Advancement in vision‐based techniques has enabled the autonomous vehicle system (AVS) to understand the driving scene in depth. The capability of autonomous vehicle system to understand the scene, and detecting the specific object depends on the strong feature representation of such object...
Enregistré dans:
Auteurs principaux: | Deepak Kumar Dewangan, Satya Prakash Sahu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3e8099d3ef224721a32420581c11a79c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
par: Bekhzod Olimov, et autres
Publié: (2021) -
A Fast Vehicle Counting and Traffic Volume Estimation Method Based on Convolutional Neural Network
par: Henglong Yang, et autres
Publié: (2021) -
Synthetic aperture radar image change detection based on convolutional‐curvelet neural network and partial graph‐cut
par: Meng Jia, et autres
Publié: (2021) -
iRegNet: Non-Rigid Registration of MRI to Interventional US for Brain-Shift Compensation Using Convolutional Neural Networks
par: Ramy A. Zeineldin, et autres
Publié: (2021) -
Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
par: Robson V. Mendonca, et autres
Publié: (2021)