Associated factors of white matter hyperintensity volume: a machine-learning approach

Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sergio Grosu, Susanne Rospleszcz, Felix Hartmann, Mohamad Habes, Fabian Bamberg, Christopher L. Schlett, Franziska Galie, Roberto Lorbeer, Sigrid Auweter, Sonja Selder, Robin Buelow, Margit Heier, Wolfgang Rathmann, Katharina Mueller-Peltzer, Karl-Heinz Ladwig, Hans J. Grabe, Annette Peters, Birgit B. Ertl-Wagner, Sophia Stoecklein
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3e861650a14c4153b0cc0080e7208f3d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3e861650a14c4153b0cc0080e7208f3d
record_format dspace
spelling oai:doaj.org-article:3e861650a14c4153b0cc0080e7208f3d2021-12-02T14:16:06ZAssociated factors of white matter hyperintensity volume: a machine-learning approach10.1038/s41598-021-81883-42045-2322https://doaj.org/article/3e861650a14c4153b0cc0080e7208f3d2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81883-4https://doaj.org/toc/2045-2322Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.Sergio GrosuSusanne RospleszczFelix HartmannMohamad HabesFabian BambergChristopher L. SchlettFranziska GalieRoberto LorbeerSigrid AuweterSonja SelderRobin BuelowMargit HeierWolfgang RathmannKatharina Mueller-PeltzerKarl-Heinz LadwigHans J. GrabeAnnette PetersBirgit B. Ertl-WagnerSophia StoeckleinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sergio Grosu
Susanne Rospleszcz
Felix Hartmann
Mohamad Habes
Fabian Bamberg
Christopher L. Schlett
Franziska Galie
Roberto Lorbeer
Sigrid Auweter
Sonja Selder
Robin Buelow
Margit Heier
Wolfgang Rathmann
Katharina Mueller-Peltzer
Karl-Heinz Ladwig
Hans J. Grabe
Annette Peters
Birgit B. Ertl-Wagner
Sophia Stoecklein
Associated factors of white matter hyperintensity volume: a machine-learning approach
description Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
format article
author Sergio Grosu
Susanne Rospleszcz
Felix Hartmann
Mohamad Habes
Fabian Bamberg
Christopher L. Schlett
Franziska Galie
Roberto Lorbeer
Sigrid Auweter
Sonja Selder
Robin Buelow
Margit Heier
Wolfgang Rathmann
Katharina Mueller-Peltzer
Karl-Heinz Ladwig
Hans J. Grabe
Annette Peters
Birgit B. Ertl-Wagner
Sophia Stoecklein
author_facet Sergio Grosu
Susanne Rospleszcz
Felix Hartmann
Mohamad Habes
Fabian Bamberg
Christopher L. Schlett
Franziska Galie
Roberto Lorbeer
Sigrid Auweter
Sonja Selder
Robin Buelow
Margit Heier
Wolfgang Rathmann
Katharina Mueller-Peltzer
Karl-Heinz Ladwig
Hans J. Grabe
Annette Peters
Birgit B. Ertl-Wagner
Sophia Stoecklein
author_sort Sergio Grosu
title Associated factors of white matter hyperintensity volume: a machine-learning approach
title_short Associated factors of white matter hyperintensity volume: a machine-learning approach
title_full Associated factors of white matter hyperintensity volume: a machine-learning approach
title_fullStr Associated factors of white matter hyperintensity volume: a machine-learning approach
title_full_unstemmed Associated factors of white matter hyperintensity volume: a machine-learning approach
title_sort associated factors of white matter hyperintensity volume: a machine-learning approach
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3e861650a14c4153b0cc0080e7208f3d
work_keys_str_mv AT sergiogrosu associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT susannerospleszcz associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT felixhartmann associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT mohamadhabes associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT fabianbamberg associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT christopherlschlett associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT franziskagalie associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT robertolorbeer associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT sigridauweter associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT sonjaselder associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT robinbuelow associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT margitheier associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT wolfgangrathmann associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT katharinamuellerpeltzer associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT karlheinzladwig associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT hansjgrabe associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT annettepeters associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT birgitbertlwagner associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
AT sophiastoecklein associatedfactorsofwhitematterhyperintensityvolumeamachinelearningapproach
_version_ 1718391720277704704