Associated factors of white matter hyperintensity volume: a machine-learning approach
Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images...
Enregistré dans:
Auteurs principaux: | Sergio Grosu, Susanne Rospleszcz, Felix Hartmann, Mohamad Habes, Fabian Bamberg, Christopher L. Schlett, Franziska Galie, Roberto Lorbeer, Sigrid Auweter, Sonja Selder, Robin Buelow, Margit Heier, Wolfgang Rathmann, Katharina Mueller-Peltzer, Karl-Heinz Ladwig, Hans J. Grabe, Annette Peters, Birgit B. Ertl-Wagner, Sophia Stoecklein |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3e861650a14c4153b0cc0080e7208f3d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Correlation between thoracolumbar disc degeneration and anatomical spinopelvic parameters in supine position on MRI.
par: Sven S Walter, et autres
Publié: (2021) -
White matter hyperintensity in different migraine subtypes
par: L. A. Dobrynina, et autres
Publié: (2021) -
Association between hepatic fat and subclinical vascular disease burden in the general population
par: Susanne Rospleszcz, et autres
Publié: (2021) -
The influence of white matter hyperintensity on cognitive impairment in Parkinson's disease
par: Hailing Liu, et autres
Publié: (2021) -
Prior intracerebral hemorrhage and white matter hyperintensity burden on recurrent stroke risk
par: Jong-Ho Park, et autres
Publié: (2021)