A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
Abstract Foliar fungicide usage in soybeans in the north-central United States increased steadily over the past two decades. An agronomically-interpretable machine learning framework was used to understand the importance of foliar fungicides relative to other factors associated with realized soybean...
Guardado en:
Autores principales: | Denis A. Shah, Thomas R. Butts, Spyridon Mourtzinis, Juan I. Rattalino Edreira, Patricio Grassini, Shawn P. Conley, Paul D. Esker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e866ed6e642441da082bfc5398484cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Planting method and seeding rate effect on whole and partitioned soybean yield
por: Spyros Mourtzinis, et al.
Publicado: (2021) -
Advancing agricultural research using machine learning algorithms
por: Spyridon Mourtzinis, et al.
Publicado: (2021) -
Effects of foliar fungicide on yield, micronutrients, and cadmium in grains from historical and modern hard winter wheat genotypes.
por: Hollman Motta-Romero, et al.
Publicado: (2021) -
Correlation and path analysis for agronomic traits contributing to yield in 30 genotypes of soybean
por: Anna Satyana Karyawati, et al.
Publicado: (2021) -
Foliar application of phytohormones enhances growth of maize and soybean seedlings
por: A. LLANES, et al.
Publicado: (2019)