Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake
Abstract Despite the challenges in identifying earthquake precursors in intraplate (inland) earthquakes, various hydrological and geochemical measurements have been conducted to establish a possible link to seismic activities. Anomalous increases in radon (222Rn) concentration in soil, groundwater,...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e88394ff1d24c18adcd5c31d065f72b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3e88394ff1d24c18adcd5c31d065f72b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3e88394ff1d24c18adcd5c31d065f72b2021-12-02T18:18:06ZPreseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake10.1038/s41598-021-86777-z2045-2322https://doaj.org/article/3e88394ff1d24c18adcd5c31d065f72b2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86777-zhttps://doaj.org/toc/2045-2322Abstract Despite the challenges in identifying earthquake precursors in intraplate (inland) earthquakes, various hydrological and geochemical measurements have been conducted to establish a possible link to seismic activities. Anomalous increases in radon (222Rn) concentration in soil, groundwater, and atmosphere have been reported prior to large earthquakes. Although the radon concentration in the atmosphere is lower than that in groundwater and soils, a recent statistical analysis has suggested that the average atmospheric concentration over a relatively wide area reflects crustal deformation. However, no study has sought to determine the underlying physico-chemical relationships between crustal deformation and anomalous atmospheric radon concentrations. Here, we show a significant decrease in the atmospheric radon concentration temporally linked to the seismic quiescence before the 2018 Northern Osaka earthquake occurring at a hidden fault with complex rupture dynamics. During seismic quiescence, deep-seated sedimentary layers in Osaka Basin, which might be the main sources of radon, become less damaged and fractured. The reduction in damage leads to a decrease in radon exhalation to the atmosphere near the fault, causing the preseismic radon decrease in the atmosphere. Herein, we highlight the necessity of continuous monitoring of the atmospheric radon concentration, combined with statistical anomaly detection method, to evaluate future seismic risks.Jun MutoYumi YasuokaNao MiuraDaichi IwataHiroyuki NagahamaMitsuhiro HiranoYoshiro OhmomoTakahiro MukaiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jun Muto Yumi Yasuoka Nao Miura Daichi Iwata Hiroyuki Nagahama Mitsuhiro Hirano Yoshiro Ohmomo Takahiro Mukai Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake |
description |
Abstract Despite the challenges in identifying earthquake precursors in intraplate (inland) earthquakes, various hydrological and geochemical measurements have been conducted to establish a possible link to seismic activities. Anomalous increases in radon (222Rn) concentration in soil, groundwater, and atmosphere have been reported prior to large earthquakes. Although the radon concentration in the atmosphere is lower than that in groundwater and soils, a recent statistical analysis has suggested that the average atmospheric concentration over a relatively wide area reflects crustal deformation. However, no study has sought to determine the underlying physico-chemical relationships between crustal deformation and anomalous atmospheric radon concentrations. Here, we show a significant decrease in the atmospheric radon concentration temporally linked to the seismic quiescence before the 2018 Northern Osaka earthquake occurring at a hidden fault with complex rupture dynamics. During seismic quiescence, deep-seated sedimentary layers in Osaka Basin, which might be the main sources of radon, become less damaged and fractured. The reduction in damage leads to a decrease in radon exhalation to the atmosphere near the fault, causing the preseismic radon decrease in the atmosphere. Herein, we highlight the necessity of continuous monitoring of the atmospheric radon concentration, combined with statistical anomaly detection method, to evaluate future seismic risks. |
format |
article |
author |
Jun Muto Yumi Yasuoka Nao Miura Daichi Iwata Hiroyuki Nagahama Mitsuhiro Hirano Yoshiro Ohmomo Takahiro Mukai |
author_facet |
Jun Muto Yumi Yasuoka Nao Miura Daichi Iwata Hiroyuki Nagahama Mitsuhiro Hirano Yoshiro Ohmomo Takahiro Mukai |
author_sort |
Jun Muto |
title |
Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake |
title_short |
Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake |
title_full |
Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake |
title_fullStr |
Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake |
title_full_unstemmed |
Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake |
title_sort |
preseismic atmospheric radon anomaly associated with 2018 northern osaka earthquake |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3e88394ff1d24c18adcd5c31d065f72b |
work_keys_str_mv |
AT junmuto preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake AT yumiyasuoka preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake AT naomiura preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake AT daichiiwata preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake AT hiroyukinagahama preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake AT mitsuhirohirano preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake AT yoshiroohmomo preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake AT takahiromukai preseismicatmosphericradonanomalyassociatedwith2018northernosakaearthquake |
_version_ |
1718378268652994560 |