The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal.
In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projecti...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3e978ad28d9b4f8bbd0241d856ec8d43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3e978ad28d9b4f8bbd0241d856ec8d43 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3e978ad28d9b4f8bbd0241d856ec8d432021-12-02T19:57:43ZThe critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal.1553-734X1553-735810.1371/journal.pcbi.1009364https://doaj.org/article/3e978ad28d9b4f8bbd0241d856ec8d432021-09-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009364https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.Hidetoshi UrakuboSho YagishitaHaruo KasaiYoshiyuki KubotaShin IshiiPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 9, p e1009364 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Hidetoshi Urakubo Sho Yagishita Haruo Kasai Yoshiyuki Kubota Shin Ishii The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. |
description |
In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS. |
format |
article |
author |
Hidetoshi Urakubo Sho Yagishita Haruo Kasai Yoshiyuki Kubota Shin Ishii |
author_facet |
Hidetoshi Urakubo Sho Yagishita Haruo Kasai Yoshiyuki Kubota Shin Ishii |
author_sort |
Hidetoshi Urakubo |
title |
The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. |
title_short |
The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. |
title_full |
The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. |
title_fullStr |
The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. |
title_full_unstemmed |
The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. |
title_sort |
critical balance between dopamine d2 receptor and rgs for the sensitive detection of a transient decay in dopamine signal. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/3e978ad28d9b4f8bbd0241d856ec8d43 |
work_keys_str_mv |
AT hidetoshiurakubo thecriticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT shoyagishita thecriticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT haruokasai thecriticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT yoshiyukikubota thecriticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT shinishii thecriticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT hidetoshiurakubo criticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT shoyagishita criticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT haruokasai criticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT yoshiyukikubota criticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal AT shinishii criticalbalancebetweendopamined2receptorandrgsforthesensitivedetectionofatransientdecayindopaminesignal |
_version_ |
1718375772559769600 |