Solving the transcription start site identification problem with ADAPT-CAGE: a Machine Learning algorithm for the analysis of CAGE data
Abstract Cap Analysis of Gene Expression (CAGE) has emerged as a powerful experimental technique for assisting in the identification of transcription start sites (TSSs). There is strong evidence that CAGE also identifies capping sites along various other locations of transcribed loci such as splicin...
Guardado en:
Autores principales: | Georgios K. Georgakilas, Nikos Perdikopanis, Artemis Hatzigeorgiou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ea25c0969444078827e4deb02a46119 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution
por: Tsukasa Kouno, et al.
Publicado: (2019) -
Mathematical modelling of starting modes of induction motors with squirrel-cage rotor
por: V. S. Malyar, et al.
Publicado: (2021) -
Self-assembled conjoined-cages
por: Sagarika Samantray, et al.
Publicado: (2020) -
Metabolic status of rabbits under physiological adaptation to cage husbandry technology
por: Khokhlova Natalia, et al.
Publicado: (2021) -
The Oxymoron of Caged Animal Welfare: A Case Study in The Australian Caged Rabbit Meat Industry
por: Reem Lascelles
Publicado: (2019)