Classification of Metaplectic Fusion Categories

In this paper, we study a family of fusion and modular systems realizing fusion categories Grothendieck equivalent to the representation category for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eddy Ardonne, Peter E. Finch, Matthew Titsworth
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3eb275166b7b4bdd92b2a2ac764b5fa8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we study a family of fusion and modular systems realizing fusion categories Grothendieck equivalent to the representation category for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">so</mi><msub><mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula>. These categories describe non-abelian anyons dubbed ‘metaplectic anyons’. We obtain explicit expressions for all the <i>F</i>- and <i>R</i>-symbols. Based on these, we conjecture a classification for their monoidal equivalence classes from an analysis of their gauge invariants and define a function which gives us the number of classes.