Classification of Metaplectic Fusion Categories
In this paper, we study a family of fusion and modular systems realizing fusion categories Grothendieck equivalent to the representation category for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3eb275166b7b4bdd92b2a2ac764b5fa8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, we study a family of fusion and modular systems realizing fusion categories Grothendieck equivalent to the representation category for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">so</mi><msub><mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula>. These categories describe non-abelian anyons dubbed ‘metaplectic anyons’. We obtain explicit expressions for all the <i>F</i>- and <i>R</i>-symbols. Based on these, we conjecture a classification for their monoidal equivalence classes from an analysis of their gauge invariants and define a function which gives us the number of classes. |
---|