Classification of Metaplectic Fusion Categories
In this paper, we study a family of fusion and modular systems realizing fusion categories Grothendieck equivalent to the representation category for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3eb275166b7b4bdd92b2a2ac764b5fa8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3eb275166b7b4bdd92b2a2ac764b5fa8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3eb275166b7b4bdd92b2a2ac764b5fa82021-11-25T19:06:45ZClassification of Metaplectic Fusion Categories10.3390/sym131121022073-8994https://doaj.org/article/3eb275166b7b4bdd92b2a2ac764b5fa82021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2102https://doaj.org/toc/2073-8994In this paper, we study a family of fusion and modular systems realizing fusion categories Grothendieck equivalent to the representation category for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">so</mi><msub><mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula>. These categories describe non-abelian anyons dubbed ‘metaplectic anyons’. We obtain explicit expressions for all the <i>F</i>- and <i>R</i>-symbols. Based on these, we conjecture a classification for their monoidal equivalence classes from an analysis of their gauge invariants and define a function which gives us the number of classes.Eddy ArdonnePeter E. FinchMatthew TitsworthMDPI AGarticlefusion categorymetaplectic anyonsgauge invariantsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2102, p 2102 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fusion category metaplectic anyons gauge invariants Mathematics QA1-939 |
spellingShingle |
fusion category metaplectic anyons gauge invariants Mathematics QA1-939 Eddy Ardonne Peter E. Finch Matthew Titsworth Classification of Metaplectic Fusion Categories |
description |
In this paper, we study a family of fusion and modular systems realizing fusion categories Grothendieck equivalent to the representation category for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">so</mi><msub><mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula>. These categories describe non-abelian anyons dubbed ‘metaplectic anyons’. We obtain explicit expressions for all the <i>F</i>- and <i>R</i>-symbols. Based on these, we conjecture a classification for their monoidal equivalence classes from an analysis of their gauge invariants and define a function which gives us the number of classes. |
format |
article |
author |
Eddy Ardonne Peter E. Finch Matthew Titsworth |
author_facet |
Eddy Ardonne Peter E. Finch Matthew Titsworth |
author_sort |
Eddy Ardonne |
title |
Classification of Metaplectic Fusion Categories |
title_short |
Classification of Metaplectic Fusion Categories |
title_full |
Classification of Metaplectic Fusion Categories |
title_fullStr |
Classification of Metaplectic Fusion Categories |
title_full_unstemmed |
Classification of Metaplectic Fusion Categories |
title_sort |
classification of metaplectic fusion categories |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/3eb275166b7b4bdd92b2a2ac764b5fa8 |
work_keys_str_mv |
AT eddyardonne classificationofmetaplecticfusioncategories AT peterefinch classificationofmetaplecticfusioncategories AT matthewtitsworth classificationofmetaplecticfusioncategories |
_version_ |
1718410272620675072 |