Asynchronous suppression of visual cortex during absence seizures in stargazer mice
Absence epilepsy is associated with frequent generalized spike-wave seizures and loss of awareness. Here the authors use 2-photon calcium imaging of primary visual cortex in a genetic mouse model of absence epilepsy and find that cortical neurons are less active and more loosely coupled to the seizu...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ebcd068ba1946c5b3c29784c6bf764e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Absence epilepsy is associated with frequent generalized spike-wave seizures and loss of awareness. Here the authors use 2-photon calcium imaging of primary visual cortex in a genetic mouse model of absence epilepsy and find that cortical neurons are less active and more loosely coupled to the seizure EEG signature than previously believed. |
---|