Preparation of a magnetic polystyrene nanocomposite for dispersive solid-phase extraction of copper ions in environmental samples

Abstract The core shell nanostructure of magnetic polystyrene (PS@Fe3O4) was prepared and its physic-chemical properties were studied FT-IR, SEM, TEM, VSM and BET + BJH. The new adsorbent was applied in the dispersive solid phase extraction technique for measuring copper ions in water, Soil and Oyst...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Ali Mehdinia, Maede Salamat, Ali Jabbari
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/3ec4ad40816649c1b29b32b2ba77c5ee
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract The core shell nanostructure of magnetic polystyrene (PS@Fe3O4) was prepared and its physic-chemical properties were studied FT-IR, SEM, TEM, VSM and BET + BJH. The new adsorbent was applied in the dispersive solid phase extraction technique for measuring copper ions in water, Soil and Oyster samples. Analysis is carried out using a flame atomic absorption spectrometry system. Effective parameters on extraction efficiency, such as pH of extraction solution, sorbent dosage, contact time, concentration and volume of desorption eluent and desorption time were optimized using one at a time method. N2 adsorption-desorption experiment resulted in high BET surface area (32.002 m2 g−1) and large pore volume (0.1794 cm3 g−1) for PS@ Fe3O4 nanocomposite. Under the optimum conditions, a calibration curve within the range of 5–40 ng mL−1 with an appropriate coefficient of determination (R2) of 0.9946 was obtained. Preconcentration factor (PF) and limit of detection (LOD) were found to be 55 and 1.6 ng mL−1, respectively. The repeatability and reproducibility for three replicate measurements at the concentration of 25 ng mL−1 were 2.5%–1.4%, respectively. The Freundlich adsorption isotherm and pseudo-second-order kinetic model were consistent to experimental data in adsorption mechanism study. The maximum adsorption capacity was 19.56 mg g−1 for Cu (II). Finally, the efficiency of the method was investigated for analysis of the copper in environmental samples and good relative recoveries (RR%) were obtained within the range of 99.2% to 101.2%.