Conversational recommendation based on end-to-end learning: How far are we?
Conversational recommender systems (CRS) are software agents that support users in their decision-making process in an interactive way. While such systems were traditionally mostly manually engineered, recent works increasingly rely on machine learning models that are trained on larger corpora of re...
Guardado en:
Autores principales: | Ahtsham Manzoor, Dietmar Jannach |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ec5dc2810de48008678313db4da4c0a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Link Scheduling and End-to-End Throughput Optimization in Wireless Multi-Hop Networks
por: Fei Ge, et al.
Publicado: (2021) -
Digital nudging with recommender systems: Survey and future directions
por: Mathias Jesse, et al.
Publicado: (2021) -
Identifying the values associated with users’ behavior towards anonymity tools through means-end analysis
por: Andreas Skalkos, et al.
Publicado: (2020) -
Editorial: On the Planning, Control, and Perception of Soft Robotic End-Effectors
por: Giuseppe Averta, et al.
Publicado: (2021) -
PrivItem2Vec: A privacy-preserving algorithm for top-N recommendation
por: Zhengqiang Ge, et al.
Publicado: (2021)