Eigenvector-spatial localisation
We present a new multiscale covariance localisation method for ensemble data assimilation that is based on the estimation of eigenvectors and subsequent projections, together with traditional spatial localisation applied with a range of localisation lengths. In short, we estimate the leading, large-...
Guardado en:
Autores principales: | Travis Harty, Matthias Morzfeld, Chris Snyder |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ec824684f74427ea6acc3bcc9395ff4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above
por: Spencer Lunderman, et al.
Publicado: (2021) -
Some quantitative characteristics of error covariance for Kalman filters
por: Wei Kang, et al.
Publicado: (2021) -
An anisotropic formulation of the parametric Kalman filter assimilation
por: Olivier Pannekoucke
Publicado: (2021) -
The importance of simulated errors in observing system simulation experiments
por: Nikki C. PrivÉ, et al.
Publicado: (2021) -
Scientific methods, media coverage, public awareness and climate change
por: A. Hannachi, et al.
Publicado: (2021)