Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
To prevent severe air pollution, it is important to analyze time-series air quality data, but this is often challenging as the time-series data is usually partially missing, especially when it is collected from multiple locations simultaneously. To solve this problem, various deep-learning-based mis...
Guardado en:
Autores principales: | Taesung Kim, Jinhee Kim, Wonho Yang, Hunjoo Lee, Jaegul Choo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ecc1319154346a2ac95bf42d3713e90 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021) -
The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis
por: Lisa Goudman, et al.
Publicado: (2021) -
An Ensemble Method for Missing Data of Environmental Sensor Considering Univariate and Multivariate Characteristics
por: Chanyoung Choi, et al.
Publicado: (2021) -
Combining time series and land cover data for analyzing spatio-temporal changes in mangrove forests: A case study of Qinglangang Nature Reserve, Hainan, China
por: Bin Zhu, et al.
Publicado: (2021) -
Machine Learning for the Relationship of High-Energy Electron Flux between GEO and MEO with Application to Missing Values Imputation for Beidou MEO Data
por: Cui Ruifei, et al.
Publicado: (2021)