Deep neural network-based classification of cardiotocograms outperformed conventional algorithms
Abstract Cardiotocography records fetal heart rates and their temporal relationship to uterine contractions. To identify high risk fetuses, obstetricians inspect cardiotocograms (CTGs) by eye. Therefore, CTG traces are often interpreted differently among obstetricians, resulting in inappropriate int...
Guardado en:
Autores principales: | Jun Ogasawara, Satoru Ikenoue, Hiroko Yamamoto, Motoshige Sato, Yoshifumi Kasuga, Yasue Mitsukura, Yuji Ikegaya, Masato Yasui, Mamoru Tanaka, Daigo Ochiai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ed9c7208b7242f5b732d84df5130a7c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
What are the causes for low birthweight in Japan? A single hospital-based study.
por: Yoshifumi Kasuga, et al.
Publicado: (2021) -
Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
por: Martin G. Frasch, et al.
Publicado: (2021) -
Terrestrial eDNA survey outperforms conventional approach for detecting an invasive pest insect within an agricultural ecosystem
por: Michael C. Allen, et al.
Publicado: (2021) -
Extortion can outperform generosity in the iterated prisoner’s dilemma
por: Zhijian Wang, et al.
Publicado: (2016) -
TALEN outperforms Cas9 in editing heterochromatin target sites
por: Surbhi Jain, et al.
Publicado: (2021)