Deep neural network-based classification of cardiotocograms outperformed conventional algorithms
Abstract Cardiotocography records fetal heart rates and their temporal relationship to uterine contractions. To identify high risk fetuses, obstetricians inspect cardiotocograms (CTGs) by eye. Therefore, CTG traces are often interpreted differently among obstetricians, resulting in inappropriate int...
Enregistré dans:
Auteurs principaux: | Jun Ogasawara, Satoru Ikenoue, Hiroko Yamamoto, Motoshige Sato, Yoshifumi Kasuga, Yasue Mitsukura, Yuji Ikegaya, Masato Yasui, Mamoru Tanaka, Daigo Ochiai |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3ed9c7208b7242f5b732d84df5130a7c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
What are the causes for low birthweight in Japan? A single hospital-based study.
par: Yoshifumi Kasuga, et autres
Publié: (2021) -
Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
par: Martin G. Frasch, et autres
Publié: (2021) -
Terrestrial eDNA survey outperforms conventional approach for detecting an invasive pest insect within an agricultural ecosystem
par: Michael C. Allen, et autres
Publié: (2021) -
Extortion can outperform generosity in the iterated prisoner’s dilemma
par: Zhijian Wang, et autres
Publié: (2016) -
TALEN outperforms Cas9 in editing heterochromatin target sites
par: Surbhi Jain, et autres
Publié: (2021)