Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation
Adsorption cooling technologies driven by low-grade thermal or solar power are used as an energy-efficient alternative to conventional refrigeration and air conditioning systems. Explicit understanding of the adsorption cycles requires precise determination of the performance parameters, replication...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ee458d3ea6143a59860f6971dfdb0a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3ee458d3ea6143a59860f6971dfdb0a0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3ee458d3ea6143a59860f6971dfdb0a02021-11-25T17:25:53ZStudy on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation10.3390/en142274781996-1073https://doaj.org/article/3ee458d3ea6143a59860f6971dfdb0a02021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/22/7478https://doaj.org/toc/1996-1073Adsorption cooling technologies driven by low-grade thermal or solar power are used as an energy-efficient alternative to conventional refrigeration and air conditioning systems. Explicit understanding of the adsorption cycles requires precise determination of the performance parameters, replication of the experimental data, and the rigorous study of the adsorption heat transformation method. Hence, the optimum adsorption isotherms model must be identified. Scientists often face difficulties in selecting the suitable isotherm model as there are many models for a particular form of adsorption isotherm. The present study introduces a novel approach for choosing the optimal models for each type of International Union of Pure and Applied Chemistry (IUPAC) classified adsorption isotherm using robust statistical methods. First, the box-and-whisker plots of error identification are employed. Tóth for Type-I(a) and Type-I(b), modified BET for Type-II, GAB for Type-III, Universal for Type-IV(a), and Type-IV(b), Sun Chakrabarty for Type-V, and Yahia et al. for Type-VI were found lower than the other candidate models in box-and-whisker plot. The optimality of our selected models was further verified using analysis of variance (ANOVA), pairwise Tukey honest significant difference (HSD) test, Kruskal–Wallis rank-sum test, and pairwise Wilcoxon rank-sum test. In short, rigorous statistical analysis was performed to identify the best model for each type of isotherm by minimizing error. Moreover, specific cooling effect (SCE) of Maxsorb III/ethanol and silica gel/water pairs were determined. Results showed that Tóth is the optimal isotherm model for the studied pairs, and the SCE values obtained from the model agree well with experimental data. The optimum isotherm model is indispensable for the precise designing of the next generation adsorption cooling cycles.Md. Matiar RahmanAbu Zar ShafiullahAnimesh PalMd. Amirul IslamIsrat JahanBidyut Baran SahaMDPI AGarticleANOVAIUPACoptimum isothermstatistical analysisTukey HSDTechnologyTENEnergies, Vol 14, Iss 7478, p 7478 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ANOVA IUPAC optimum isotherm statistical analysis Tukey HSD Technology T |
spellingShingle |
ANOVA IUPAC optimum isotherm statistical analysis Tukey HSD Technology T Md. Matiar Rahman Abu Zar Shafiullah Animesh Pal Md. Amirul Islam Israt Jahan Bidyut Baran Saha Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation |
description |
Adsorption cooling technologies driven by low-grade thermal or solar power are used as an energy-efficient alternative to conventional refrigeration and air conditioning systems. Explicit understanding of the adsorption cycles requires precise determination of the performance parameters, replication of the experimental data, and the rigorous study of the adsorption heat transformation method. Hence, the optimum adsorption isotherms model must be identified. Scientists often face difficulties in selecting the suitable isotherm model as there are many models for a particular form of adsorption isotherm. The present study introduces a novel approach for choosing the optimal models for each type of International Union of Pure and Applied Chemistry (IUPAC) classified adsorption isotherm using robust statistical methods. First, the box-and-whisker plots of error identification are employed. Tóth for Type-I(a) and Type-I(b), modified BET for Type-II, GAB for Type-III, Universal for Type-IV(a), and Type-IV(b), Sun Chakrabarty for Type-V, and Yahia et al. for Type-VI were found lower than the other candidate models in box-and-whisker plot. The optimality of our selected models was further verified using analysis of variance (ANOVA), pairwise Tukey honest significant difference (HSD) test, Kruskal–Wallis rank-sum test, and pairwise Wilcoxon rank-sum test. In short, rigorous statistical analysis was performed to identify the best model for each type of isotherm by minimizing error. Moreover, specific cooling effect (SCE) of Maxsorb III/ethanol and silica gel/water pairs were determined. Results showed that Tóth is the optimal isotherm model for the studied pairs, and the SCE values obtained from the model agree well with experimental data. The optimum isotherm model is indispensable for the precise designing of the next generation adsorption cooling cycles. |
format |
article |
author |
Md. Matiar Rahman Abu Zar Shafiullah Animesh Pal Md. Amirul Islam Israt Jahan Bidyut Baran Saha |
author_facet |
Md. Matiar Rahman Abu Zar Shafiullah Animesh Pal Md. Amirul Islam Israt Jahan Bidyut Baran Saha |
author_sort |
Md. Matiar Rahman |
title |
Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation |
title_short |
Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation |
title_full |
Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation |
title_fullStr |
Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation |
title_full_unstemmed |
Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation |
title_sort |
study on optimum iupac adsorption isotherm models employing sensitivity of parameters for rigorous adsorption system performance evaluation |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/3ee458d3ea6143a59860f6971dfdb0a0 |
work_keys_str_mv |
AT mdmatiarrahman studyonoptimumiupacadsorptionisothermmodelsemployingsensitivityofparametersforrigorousadsorptionsystemperformanceevaluation AT abuzarshafiullah studyonoptimumiupacadsorptionisothermmodelsemployingsensitivityofparametersforrigorousadsorptionsystemperformanceevaluation AT animeshpal studyonoptimumiupacadsorptionisothermmodelsemployingsensitivityofparametersforrigorousadsorptionsystemperformanceevaluation AT mdamirulislam studyonoptimumiupacadsorptionisothermmodelsemployingsensitivityofparametersforrigorousadsorptionsystemperformanceevaluation AT isratjahan studyonoptimumiupacadsorptionisothermmodelsemployingsensitivityofparametersforrigorousadsorptionsystemperformanceevaluation AT bidyutbaransaha studyonoptimumiupacadsorptionisothermmodelsemployingsensitivityofparametersforrigorousadsorptionsystemperformanceevaluation |
_version_ |
1718412345223413760 |