Monomode Optical Waveguide Achieved by Lattice Damage in Yttria-Stabilized Zirconia Crystal Induced from Energetic Oxygen Irradiation
With valuable physicochemical properties, yttria-stabilized zirconia crystal has promising advantages in optical applications. In this paper, the waveguide effect is observed in yttria-stabilized zirconia crystal irradiated by energetic oxygen ions. The waveguide properties and the field intensity a...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f16474290f84dcdb19081468ad656a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | With valuable physicochemical properties, yttria-stabilized zirconia crystal has promising advantages in optical applications. In this paper, the waveguide effect is observed in yttria-stabilized zirconia crystal irradiated by energetic oxygen ions. The waveguide properties and the field intensity are analyzed using prism and end-face coupling method arrangements, and the results show that monomode is found in the near-surface region and the light beam can be well confined in the waveguide structure, which shows refractive index distribution of the barrier-wall and enhanced-well type. The lattice damage induced by irradiation is investigated by the Rutherford backscattering/channeling experiment and high-resolution X-ray diffraction techniques. The simulation results are in good agreement with the experimental data. |
---|