Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process
Abstract Freezing is a common method for improving enzyme storage stability. During the freezing process, the freezing rate is an important parameter that can affect protein stability. However, there is limited information on the denaturation mechanisms and protein conformational changes associated...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f1c0e626bfc41b5ac7e67f35cd10d69 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3f1c0e626bfc41b5ac7e67f35cd10d69 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3f1c0e626bfc41b5ac7e67f35cd10d692021-12-02T16:10:35ZEffects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process10.1038/s41598-021-93127-62045-2322https://doaj.org/article/3f1c0e626bfc41b5ac7e67f35cd10d692021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93127-6https://doaj.org/toc/2045-2322Abstract Freezing is a common method for improving enzyme storage stability. During the freezing process, the freezing rate is an important parameter that can affect protein stability. However, there is limited information on the denaturation mechanisms and protein conformational changes associated with the freezing rate. In this study, the effects of freezing rate on activity loss and conformational changes in a model enzyme, l-lactate dehydrogenase, were evaluated. Enzyme solutions were frozen at various rates, from 0.2 to 70.6 °C/min, and ice seeding was conducted to reduce supercooling. The results demonstrated that fast freezing results in activity loss, structural changes, and aggregation. The residual activities at freezing rates of 0.2, 12.8, and 70.6 °C/min were 77.6 ± 0.9%, 64.1 ± 0.4%, and 44.8 ± 2.0%, respectively. As the freezing rate increased, the degree of dissociation and unfolding increased significantly, as determined using blue native-polyacrylamide gel electrophoresis and fluorescence spectroscopy. Moreover, a large number of amyloid aggregates were detected in samples frozen at a fast freezing rate (70.6 °C/min). The enzyme inactivation mechanism induced by fast freezing was proposed in terms of increased dehydration at the enzyme surface and an ice/unfroze solution interface, which could be helpful to establish a common understanding of enzyme inactivation during the freezing process.Haena ParkJun-Young ParkKyung-Min ParkPahn-Shick ChangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Haena Park Jun-Young Park Kyung-Min Park Pahn-Shick Chang Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process |
description |
Abstract Freezing is a common method for improving enzyme storage stability. During the freezing process, the freezing rate is an important parameter that can affect protein stability. However, there is limited information on the denaturation mechanisms and protein conformational changes associated with the freezing rate. In this study, the effects of freezing rate on activity loss and conformational changes in a model enzyme, l-lactate dehydrogenase, were evaluated. Enzyme solutions were frozen at various rates, from 0.2 to 70.6 °C/min, and ice seeding was conducted to reduce supercooling. The results demonstrated that fast freezing results in activity loss, structural changes, and aggregation. The residual activities at freezing rates of 0.2, 12.8, and 70.6 °C/min were 77.6 ± 0.9%, 64.1 ± 0.4%, and 44.8 ± 2.0%, respectively. As the freezing rate increased, the degree of dissociation and unfolding increased significantly, as determined using blue native-polyacrylamide gel electrophoresis and fluorescence spectroscopy. Moreover, a large number of amyloid aggregates were detected in samples frozen at a fast freezing rate (70.6 °C/min). The enzyme inactivation mechanism induced by fast freezing was proposed in terms of increased dehydration at the enzyme surface and an ice/unfroze solution interface, which could be helpful to establish a common understanding of enzyme inactivation during the freezing process. |
format |
article |
author |
Haena Park Jun-Young Park Kyung-Min Park Pahn-Shick Chang |
author_facet |
Haena Park Jun-Young Park Kyung-Min Park Pahn-Shick Chang |
author_sort |
Haena Park |
title |
Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process |
title_short |
Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process |
title_full |
Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process |
title_fullStr |
Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process |
title_full_unstemmed |
Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process |
title_sort |
effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3f1c0e626bfc41b5ac7e67f35cd10d69 |
work_keys_str_mv |
AT haenapark effectsoffreezingrateonstructuralchangesinllactatedehydrogenaseduringthefreezingprocess AT junyoungpark effectsoffreezingrateonstructuralchangesinllactatedehydrogenaseduringthefreezingprocess AT kyungminpark effectsoffreezingrateonstructuralchangesinllactatedehydrogenaseduringthefreezingprocess AT pahnshickchang effectsoffreezingrateonstructuralchangesinllactatedehydrogenaseduringthefreezingprocess |
_version_ |
1718384405536309248 |