Characterization of Anatomical and Physiological Effects of Variegation Mutation on Grapevine

Variegation is a common trait in plants that characteristically displays white or off-colored plant tissue. In grapevine, leaf variegation is expressed as white and pale green leaf tissue resulting in plants that are stunted in growth and hindered in development. In this study, several experiments w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jack Olson, Matthew Clark
Formato: article
Lenguaje:EN
Publicado: American Society for Horticultural Science (ASHS) 2021
Materias:
Acceso en línea:https://doi.org/10.21273/HORTSCI15929-21
https://doaj.org/article/3f223dd3ec1244479a678392574202c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Variegation is a common trait in plants that characteristically displays white or off-colored plant tissue. In grapevine, leaf variegation is expressed as white and pale green leaf tissue resulting in plants that are stunted in growth and hindered in development. In this study, several experiments were performed to investigate the impact of this mutation has on the anatomy of grape leaves and physiology of the plant. Histological staining of variegated and nonvariegated leaf tissue transections showed alterations to the leaf palisade mesophyll structure that affected leaf tissue width. An assay quantifying leaf pigments was performed to compare chlorophyll and carotenoid concentrations in leaves between variegated and wild-type seedlings, which showed that variegated leaf samples had reduced chlorophyll and carotenoid concentration. Through fluorescence imaging, we determined that photochemical efficiency of photosystem II (PSII) is reduced in variegated seedlings. By growing variegated and wild-type plants under high, medium, and low light intensities that variegated plants exposed to higher light intensity reduces the phenotypic expression of the variegation trait. Also, we found variegated plants to have significant reductions in growth traits such as plant height, leaf number, branch number, and dry weight compared with wild-type phenotype plants. Overall, our experiments revealed the variegation mutation altered normal leaf development causing significant effects to grapevine physiology.