A Novel Hierarchical Deep Matrix Completion Method
The matrix completion technique based on matrix factorization for recovering missing items is widely used in collaborative filtering, image restoration, and other applications. We proposed a new matrix completion model called hierarchical deep matrix completion (HDMC), where we assume that the varia...
Guardado en:
Autores principales: | Yaru Chen, Xiaohong Gu, Conghua Zhou, Xiaolong Zhu, Yi Jiang, John Kingsley Arthur, Eric Appiah Mantey, Ernest Domanaanmwi Ganaa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f365e77f52f4a93b4a52aa3a2aac4e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid Matrix Completion Model for Improved Images Recovery and Recommendation Systems
por: Kai Xu, et al.
Publicado: (2021) -
Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks
por: Mahmood Azhar Qureshi, et al.
Publicado: (2021) -
Iterative LMI Approach to Robust Hierarchical Control of Homogenous Linear Multi-Agent Systems Subject to Polytopic Uncertainty and External Disturbance
por: Tuynh Van Pham, et al.
Publicado: (2021) -
Machine Learning-Based Clinical Adjusted Selection of Predicting Risk Factors for Shunt Infection in Children
por: Ehsan Moradi, et al.
Publicado: (2021) -
On the existence of semigraphs and complete semigraphs with given parameters
por: Jyoti Shetty, et al.
Publicado: (2021)