A Novel Hierarchical Deep Matrix Completion Method
The matrix completion technique based on matrix factorization for recovering missing items is widely used in collaborative filtering, image restoration, and other applications. We proposed a new matrix completion model called hierarchical deep matrix completion (HDMC), where we assume that the varia...
Enregistré dans:
Auteurs principaux: | Yaru Chen, Xiaohong Gu, Conghua Zhou, Xiaolong Zhu, Yi Jiang, John Kingsley Arthur, Eric Appiah Mantey, Ernest Domanaanmwi Ganaa |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3f365e77f52f4a93b4a52aa3a2aac4e9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hybrid Matrix Completion Model for Improved Images Recovery and Recommendation Systems
par: Kai Xu, et autres
Publié: (2021) -
Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks
par: Mahmood Azhar Qureshi, et autres
Publié: (2021) -
Iterative LMI Approach to Robust Hierarchical Control of Homogenous Linear Multi-Agent Systems Subject to Polytopic Uncertainty and External Disturbance
par: Tuynh Van Pham, et autres
Publié: (2021) -
Machine Learning-Based Clinical Adjusted Selection of Predicting Risk Factors for Shunt Infection in Children
par: Ehsan Moradi, et autres
Publié: (2021) -
On the existence of semigraphs and complete semigraphs with given parameters
par: Jyoti Shetty, et autres
Publié: (2021)