Target-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species
The sustainability of rice cropping systems is jeopardized by the large number and variety of populations of polyploid <i>Echinochloa</i> spp. resistant to ALS inhibitors. Better knowledge of the <i>Echinochloa</i> species present in Italian rice fields and the study of <i...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f384c4df5a647edb924b50b2581e8d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3f384c4df5a647edb924b50b2581e8d9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3f384c4df5a647edb924b50b2581e8d92021-11-25T17:42:36ZTarget-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species10.3390/genes121118412073-4425https://doaj.org/article/3f384c4df5a647edb924b50b2581e8d92021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4425/12/11/1841https://doaj.org/toc/2073-4425The sustainability of rice cropping systems is jeopardized by the large number and variety of populations of polyploid <i>Echinochloa</i> spp. resistant to ALS inhibitors. Better knowledge of the <i>Echinochloa</i> species present in Italian rice fields and the study of <i>ALS</i> genes involved in target-site resistance could significantly contribute to a better understanding of resistance evolution and management. Using a CAPS-<i>rbcL</i> molecular marker, two species, <i>E. crus-galli</i> (L.) P. Beauv. and <i>E. oryzicola</i> (Vasinger) Vasing., were identified as the most common species in rice in Italy. Mutations involved in ALS inhibitor resistance in the different species were identified and associated with the <i>ALS</i> homoeologs. The relative expression of the <i>ALS</i> gene copies was evaluated. Molecular characterization led to the identification of three <i>ALS</i> genes in <i>E. crus-galli</i> and two in <i>E. oryzicola</i>. The two species also carried different point mutations conferring resistance: Ala122Asn in <i>E. crus-galli</i> and Trp574Leu in <i>E. oryzicola</i>. Mutations were carried in the same gene copy (<i>ALS1</i>), which was significantly more expressed than the other copies (<i>ALS2</i> and <i>ALS3</i>) in both species. These results explain the high resistance level of these populations and why mutations in the other <i>ALS</i> copies are not involved in herbicide resistance.Silvia PanozzoElisa MascanzoniLaura ScarabelAndrea MilaniGiliardi DalazenAldo J. MerottoPatrick J. TranelMaurizio SattinMDPI AGarticle<i>Echinochloa</i> spp.barnyard grasslate watergrassDNA barcodingALS inhibitors resistancetarget-site resistanceGeneticsQH426-470ENGenes, Vol 12, Iss 1841, p 1841 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
<i>Echinochloa</i> spp. barnyard grass late watergrass DNA barcoding ALS inhibitors resistance target-site resistance Genetics QH426-470 |
spellingShingle |
<i>Echinochloa</i> spp. barnyard grass late watergrass DNA barcoding ALS inhibitors resistance target-site resistance Genetics QH426-470 Silvia Panozzo Elisa Mascanzoni Laura Scarabel Andrea Milani Giliardi Dalazen Aldo J. Merotto Patrick J. Tranel Maurizio Sattin Target-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species |
description |
The sustainability of rice cropping systems is jeopardized by the large number and variety of populations of polyploid <i>Echinochloa</i> spp. resistant to ALS inhibitors. Better knowledge of the <i>Echinochloa</i> species present in Italian rice fields and the study of <i>ALS</i> genes involved in target-site resistance could significantly contribute to a better understanding of resistance evolution and management. Using a CAPS-<i>rbcL</i> molecular marker, two species, <i>E. crus-galli</i> (L.) P. Beauv. and <i>E. oryzicola</i> (Vasinger) Vasing., were identified as the most common species in rice in Italy. Mutations involved in ALS inhibitor resistance in the different species were identified and associated with the <i>ALS</i> homoeologs. The relative expression of the <i>ALS</i> gene copies was evaluated. Molecular characterization led to the identification of three <i>ALS</i> genes in <i>E. crus-galli</i> and two in <i>E. oryzicola</i>. The two species also carried different point mutations conferring resistance: Ala122Asn in <i>E. crus-galli</i> and Trp574Leu in <i>E. oryzicola</i>. Mutations were carried in the same gene copy (<i>ALS1</i>), which was significantly more expressed than the other copies (<i>ALS2</i> and <i>ALS3</i>) in both species. These results explain the high resistance level of these populations and why mutations in the other <i>ALS</i> copies are not involved in herbicide resistance. |
format |
article |
author |
Silvia Panozzo Elisa Mascanzoni Laura Scarabel Andrea Milani Giliardi Dalazen Aldo J. Merotto Patrick J. Tranel Maurizio Sattin |
author_facet |
Silvia Panozzo Elisa Mascanzoni Laura Scarabel Andrea Milani Giliardi Dalazen Aldo J. Merotto Patrick J. Tranel Maurizio Sattin |
author_sort |
Silvia Panozzo |
title |
Target-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species |
title_short |
Target-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species |
title_full |
Target-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species |
title_fullStr |
Target-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species |
title_full_unstemmed |
Target-Site Mutations and Expression of <i>ALS</i> Gene Copies Vary According to <i>Echinochloa</i> Species |
title_sort |
target-site mutations and expression of <i>als</i> gene copies vary according to <i>echinochloa</i> species |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/3f384c4df5a647edb924b50b2581e8d9 |
work_keys_str_mv |
AT silviapanozzo targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies AT elisamascanzoni targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies AT laurascarabel targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies AT andreamilani targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies AT giliardidalazen targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies AT aldojmerotto targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies AT patrickjtranel targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies AT mauriziosattin targetsitemutationsandexpressionofialsigenecopiesvaryaccordingtoiechinochloaispecies |
_version_ |
1718412098943320064 |