Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel

Abstract Adsorbent regeneration is critical for a continuous adsorption–regeneration process and often underestimated. In this work, the regeneration of bifunctional AgXO@SBA-15 for [O]-induced reactive adsorptive desulfurization of liquid fuel is reported and further investigated. The spent AgXO@SB...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liqiong Wu, Feiyan Ye, Dong Lei, Guang Miao, Baoyu Liu, Zhong Li, Jing Xiao
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/3f474bc414ef426ab5f5998f0661b18d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3f474bc414ef426ab5f5998f0661b18d
record_format dspace
spelling oai:doaj.org-article:3f474bc414ef426ab5f5998f0661b18d2021-12-02T10:12:33ZRegeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel10.1007/s12182-018-0264-81672-51071995-8226https://doaj.org/article/3f474bc414ef426ab5f5998f0661b18d2018-10-01T00:00:00Zhttp://link.springer.com/article/10.1007/s12182-018-0264-8https://doaj.org/toc/1672-5107https://doaj.org/toc/1995-8226Abstract Adsorbent regeneration is critical for a continuous adsorption–regeneration process and often underestimated. In this work, the regeneration of bifunctional AgXO@SBA-15 for [O]-induced reactive adsorptive desulfurization of liquid fuel is reported and further investigated. The spent AgXO@SBA-15 was regenerated in various types of solvents followed by calcination and tested in multiple desulfurization–regeneration cycles. The effects of regenerate solvents were also compared systematically. The original and regenerated AgXO@SBA-15 was characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption, X-ray photoelectron spectroscopy and atomic absorption spectrometry. The recovery of desulfurization capacity using various solvents follows the order of acetonitrile > acetone > ethanol > methanol > water. Owing to the complete reduction of silver species to Ag0 and severe agglomeration of Ag0, the bifunctional AgXO@SBA-15 demonstrating > 85% (2.60 mg-S/g) of sulfur removal dramatically reduced to < 46% (1.56 mg-S/g) after only 1st-cycle regeneration. It is suggested that polar organic species strongly adsorbed (or residual) on the spent AgXO@SBA-15, in that case, after solvent wash may contribute to the accelerated decomposition of Ag+ to Ag0 in the following calcination step. The desulfurization capacity decreased rather mildly in the later regeneration runs. Cautious choice of regeneration conditions and strategies to rational design stabilized adsorbents is required to avert the adsorbent deactivation.Liqiong WuFeiyan YeDong LeiGuang MiaoBaoyu LiuZhong LiJing XiaoKeAi Communications Co., Ltd.articleBifunctionalRegenerationOxidationAdsorptionDeactivationScienceQPetrologyQE420-499ENPetroleum Science, Vol 15, Iss 4, Pp 857-869 (2018)
institution DOAJ
collection DOAJ
language EN
topic Bifunctional
Regeneration
Oxidation
Adsorption
Deactivation
Science
Q
Petrology
QE420-499
spellingShingle Bifunctional
Regeneration
Oxidation
Adsorption
Deactivation
Science
Q
Petrology
QE420-499
Liqiong Wu
Feiyan Ye
Dong Lei
Guang Miao
Baoyu Liu
Zhong Li
Jing Xiao
Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel
description Abstract Adsorbent regeneration is critical for a continuous adsorption–regeneration process and often underestimated. In this work, the regeneration of bifunctional AgXO@SBA-15 for [O]-induced reactive adsorptive desulfurization of liquid fuel is reported and further investigated. The spent AgXO@SBA-15 was regenerated in various types of solvents followed by calcination and tested in multiple desulfurization–regeneration cycles. The effects of regenerate solvents were also compared systematically. The original and regenerated AgXO@SBA-15 was characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption, X-ray photoelectron spectroscopy and atomic absorption spectrometry. The recovery of desulfurization capacity using various solvents follows the order of acetonitrile > acetone > ethanol > methanol > water. Owing to the complete reduction of silver species to Ag0 and severe agglomeration of Ag0, the bifunctional AgXO@SBA-15 demonstrating > 85% (2.60 mg-S/g) of sulfur removal dramatically reduced to < 46% (1.56 mg-S/g) after only 1st-cycle regeneration. It is suggested that polar organic species strongly adsorbed (or residual) on the spent AgXO@SBA-15, in that case, after solvent wash may contribute to the accelerated decomposition of Ag+ to Ag0 in the following calcination step. The desulfurization capacity decreased rather mildly in the later regeneration runs. Cautious choice of regeneration conditions and strategies to rational design stabilized adsorbents is required to avert the adsorbent deactivation.
format article
author Liqiong Wu
Feiyan Ye
Dong Lei
Guang Miao
Baoyu Liu
Zhong Li
Jing Xiao
author_facet Liqiong Wu
Feiyan Ye
Dong Lei
Guang Miao
Baoyu Liu
Zhong Li
Jing Xiao
author_sort Liqiong Wu
title Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel
title_short Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel
title_full Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel
title_fullStr Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel
title_full_unstemmed Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel
title_sort regeneration of agxo@sba-15 for reactive adsorptive desulfurization of fuel
publisher KeAi Communications Co., Ltd.
publishDate 2018
url https://doaj.org/article/3f474bc414ef426ab5f5998f0661b18d
work_keys_str_mv AT liqiongwu regenerationofagxosba15forreactiveadsorptivedesulfurizationoffuel
AT feiyanye regenerationofagxosba15forreactiveadsorptivedesulfurizationoffuel
AT donglei regenerationofagxosba15forreactiveadsorptivedesulfurizationoffuel
AT guangmiao regenerationofagxosba15forreactiveadsorptivedesulfurizationoffuel
AT baoyuliu regenerationofagxosba15forreactiveadsorptivedesulfurizationoffuel
AT zhongli regenerationofagxosba15forreactiveadsorptivedesulfurizationoffuel
AT jingxiao regenerationofagxosba15forreactiveadsorptivedesulfurizationoffuel
_version_ 1718397518842167296