Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma

Abstract The number of genetic factors associated with asthma remains limited. To identify new genes with an undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Y. Liu, M. Brossard, C. Sarnowski, A. Vaysse, M. Moffatt, P. Margaritte-Jeannin, F. Llinares-López, M. H. Dizier, M. Lathrop, W. Cookson, E. Bouzigon, F. Demenais
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3f51af61fea74110990d66ccbe5319cf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3f51af61fea74110990d66ccbe5319cf
record_format dspace
spelling oai:doaj.org-article:3f51af61fea74110990d66ccbe5319cf2021-12-02T16:06:43ZNetwork-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma10.1038/s41598-017-01058-y2045-2322https://doaj.org/article/3f51af61fea74110990d66ccbe5319cf2017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01058-yhttps://doaj.org/toc/2045-2322Abstract The number of genetic factors associated with asthma remains limited. To identify new genes with an undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-protein interaction networks. We used two GWAS datasets, each consisting of the results of a meta-analysis of nine childhood-onset asthma GWASs (5,924 and 6,043 subjects, respectively). We developed a novel method to compute gene-level P-values (fastCGP), and proposed a parallel dense-module search and cross-selection strategy to identify an asthma-associated gene module. We identified a module of 91 genes with a significant joint effect on childhood-onset asthma (P < 10−5). This module contained a core subnetwork including genes at known asthma loci and five peripheral subnetworks including relevant candidates. Notably, the core genes were connected to APP (encoding amyloid beta precursor protein), a major player in Alzheimer’s disease that is known to have immune and inflammatory components. Functional analysis of the module genes revealed four gene clusters involved in innate and adaptive immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically meaningful processes that may underlie asthma risk. Our findings provide important clues for future research into asthma aetiology.Y. LiuM. BrossardC. SarnowskiA. VaysseM. MoffattP. Margaritte-JeanninF. Llinares-LópezM. H. DizierM. LathropW. CooksonE. BouzigonF. DemenaisNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Y. Liu
M. Brossard
C. Sarnowski
A. Vaysse
M. Moffatt
P. Margaritte-Jeannin
F. Llinares-López
M. H. Dizier
M. Lathrop
W. Cookson
E. Bouzigon
F. Demenais
Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
description Abstract The number of genetic factors associated with asthma remains limited. To identify new genes with an undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-protein interaction networks. We used two GWAS datasets, each consisting of the results of a meta-analysis of nine childhood-onset asthma GWASs (5,924 and 6,043 subjects, respectively). We developed a novel method to compute gene-level P-values (fastCGP), and proposed a parallel dense-module search and cross-selection strategy to identify an asthma-associated gene module. We identified a module of 91 genes with a significant joint effect on childhood-onset asthma (P < 10−5). This module contained a core subnetwork including genes at known asthma loci and five peripheral subnetworks including relevant candidates. Notably, the core genes were connected to APP (encoding amyloid beta precursor protein), a major player in Alzheimer’s disease that is known to have immune and inflammatory components. Functional analysis of the module genes revealed four gene clusters involved in innate and adaptive immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically meaningful processes that may underlie asthma risk. Our findings provide important clues for future research into asthma aetiology.
format article
author Y. Liu
M. Brossard
C. Sarnowski
A. Vaysse
M. Moffatt
P. Margaritte-Jeannin
F. Llinares-López
M. H. Dizier
M. Lathrop
W. Cookson
E. Bouzigon
F. Demenais
author_facet Y. Liu
M. Brossard
C. Sarnowski
A. Vaysse
M. Moffatt
P. Margaritte-Jeannin
F. Llinares-López
M. H. Dizier
M. Lathrop
W. Cookson
E. Bouzigon
F. Demenais
author_sort Y. Liu
title Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_short Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_full Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_fullStr Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_full_unstemmed Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_sort network-assisted analysis of gwas data identifies a functionally-relevant gene module for childhood-onset asthma
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/3f51af61fea74110990d66ccbe5319cf
work_keys_str_mv AT yliu networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT mbrossard networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT csarnowski networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT avaysse networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT mmoffatt networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT pmargarittejeannin networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT fllinareslopez networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT mhdizier networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT mlathrop networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT wcookson networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT ebouzigon networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT fdemenais networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
_version_ 1718384898758148096