ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler
<p>The El Niño–Southern Oscillation (ENSO) is an extremely complicated ocean–atmosphere coupling event, the development and decay of which are usually modulated by the energy interactions between multiple physical variables. In this paper, we design a multivariate air–sea coupler (ASC) based o...
Guardado en:
Autores principales: | B. Mu, B. Qin, S. Yuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f5cd748f59e4abd8d25a37684f3fc85 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
por: L. Yu, et al.
Publicado: (2021) -
ENSO diversity shows robust decadal variations that must be captured for accurate future projections
por: Bastien Dieppois, et al.
Publicado: (2021) -
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
por: E. A. Quichimbo, et al.
Publicado: (2021) -
Investigating links between rainfall variations in the Ogooué River basin and ENSO in the Pacific Ocean over the period 1940–1999
por: S. Bogning, et al.
Publicado: (2021) -
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
por: G. Kirstetter, et al.
Publicado: (2021)