ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler
<p>The El Niño–Southern Oscillation (ENSO) is an extremely complicated ocean–atmosphere coupling event, the development and decay of which are usually modulated by the energy interactions between multiple physical variables. In this paper, we design a multivariate air–sea coupler (ASC) based o...
Enregistré dans:
Auteurs principaux: | B. Mu, B. Qin, S. Yuan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Copernicus Publications
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3f5cd748f59e4abd8d25a37684f3fc85 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
par: L. Yu, et autres
Publié: (2021) -
ENSO diversity shows robust decadal variations that must be captured for accurate future projections
par: Bastien Dieppois, et autres
Publié: (2021) -
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
par: E. A. Quichimbo, et autres
Publié: (2021) -
Investigating links between rainfall variations in the Ogooué River basin and ENSO in the Pacific Ocean over the period 1940–1999
par: S. Bogning, et autres
Publié: (2021) -
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
par: G. Kirstetter, et autres
Publié: (2021)