Three-level order-adaptive weighted essentially non-oscillatory schemes
Classical fifth-order weighted essentially non-oscillatory (WENO) schemes are based on reconstructions from three consecutive second-order polynomials. They give a third-order accurate scheme when two consecutive polynomials are smooth and one is non-smooth. This situation means losing one order of...
Guardado en:
Autores principales: | A. Arun Govind Neelan, Manoj T. Nair, Raimund Bürger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f7023a379e04e95bbb0aa84deec14e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Extended domain for fifth convergence order schemes
por: Argyros,Ioannis K., et al.
Publicado: (2021) -
Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows
por: Saray Busto, et al.
Publicado: (2021) -
Interpolation schemes for valve closure modelling
por: Twyman Q.,John
Publicado: (2018) -
Conservative Finite-Difference Schemes for Two Nonlinear Schrödinger Equations Describing Frequency Tripling in a Medium with Cubic Nonlinearity: Competition of Invariants
por: Vyacheslav Trofimov, et al.
Publicado: (2021) -
Transformation of Spiral and Straight Schemes of Thinking in Translation (on Material of Chinese and Russian Languages)
por: L. An, et al.
Publicado: (2018)