Green Synthesized BSA-Coated Selenium Nanoparticles Inhibit Bacterial Growth While Promoting Mammalian Cell Growth

Stanley Chung,1,* Renhui Zhou,2,* Thomas J Webster1 1Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; 2College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China*These authors contributed equally to this workCorrespondence: Thomas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chung S, Zhou R, Webster TJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/3f726792780e4575accdd0dd3c3bfc7e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Stanley Chung,1,* Renhui Zhou,2,* Thomas J Webster1 1Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; 2College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China*These authors contributed equally to this workCorrespondence: Thomas J WebsterDepartment of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 313 Snell Engineering Center, Boston, MA 02215, USAEmail th.webster@neu.eduBackground: Selenium is an essential trace element that is critical for many biological processes. Selenium nanoparticles (SeNPs) have shown more promise than other forms of selenium due to their low cytotoxicity and high bioavailability.Methods: In this work, a one-step method was demonstrated for fabricating bovine serum albumin (BSA) stabilized SeNPs using ascorbic acid as the reductant. Human dermal fibroblasts were used to assess mammalian cytotoxicity, and Staphylococcus aureus and Escherichia coli were used to assess antibacterial performance.Results: These SeNPs demonstrated increased fibroblast growth and reduced Staphylococcus aureus growth with a fibroblast IC50 value (>681 μg/mL) 1 order of magnitude higher than that for bacteria at day 1.Conclusion: This study demonstrated the promise of this synthesis process in achieving controllable selenium nanoparticle sizes without the use of strong basic solvents for improved antibacterial properties.Keywords: selenium, green synthesis, nanoparticles, antibacterial, ascorbic acid