Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity
Abstract Neurofeedback training (NFT) enables users to learn self-control of EEG activity of interest and then to create many benefits on cognitive function. A considerable number of nonresponders who fail to achieve successful NFT have often been reported in the within-session prediction. This stud...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f885e1e74da4662a79641a566068fe1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3f885e1e74da4662a79641a566068fe1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3f885e1e74da4662a79641a566068fe12021-12-02T18:37:09ZValidation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity10.1038/s41598-021-99235-72045-2322https://doaj.org/article/3f885e1e74da4662a79641a566068fe12021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99235-7https://doaj.org/toc/2045-2322Abstract Neurofeedback training (NFT) enables users to learn self-control of EEG activity of interest and then to create many benefits on cognitive function. A considerable number of nonresponders who fail to achieve successful NFT have often been reported in the within-session prediction. This study aimed to investigate successful EEG NFT of upregulation alpha activity in terms of trainability, independence, and between-session predictability validation. Forty-six participants completed 12 training sessions. Spectrotemporal analysis revealed the upregulation success on brain activity of 8–12 Hz exclusively to demonstrate trainability and independence of alpha NFT. Three learning indices of between-session changes exhibited significant correlations with eyes-closed resting state (ECRS) alpha amplitude before the training exclusively. Through a stepwise linear discriminant analysis, the prediction model of ECRS’s alpha frequency band amplitude exhibited the best accuracy (89.1%) validation regarding the learning index of increased alpha amplitude on average. This study performed a systematic analysis on NFT success, the performance of the 3 between-session learning indices, and the validation of ECRS alpha activity for responder prediction. The findings would assist researchers in obtaining insight into the training efficacy of individuals and then attempting to adapt an efficient strategy in NFT success.Ken-Hsien SuJen-Jui HsuehTainsong ChenFu-Zen ShawNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ken-Hsien Su Jen-Jui Hsueh Tainsong Chen Fu-Zen Shaw Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity |
description |
Abstract Neurofeedback training (NFT) enables users to learn self-control of EEG activity of interest and then to create many benefits on cognitive function. A considerable number of nonresponders who fail to achieve successful NFT have often been reported in the within-session prediction. This study aimed to investigate successful EEG NFT of upregulation alpha activity in terms of trainability, independence, and between-session predictability validation. Forty-six participants completed 12 training sessions. Spectrotemporal analysis revealed the upregulation success on brain activity of 8–12 Hz exclusively to demonstrate trainability and independence of alpha NFT. Three learning indices of between-session changes exhibited significant correlations with eyes-closed resting state (ECRS) alpha amplitude before the training exclusively. Through a stepwise linear discriminant analysis, the prediction model of ECRS’s alpha frequency band amplitude exhibited the best accuracy (89.1%) validation regarding the learning index of increased alpha amplitude on average. This study performed a systematic analysis on NFT success, the performance of the 3 between-session learning indices, and the validation of ECRS alpha activity for responder prediction. The findings would assist researchers in obtaining insight into the training efficacy of individuals and then attempting to adapt an efficient strategy in NFT success. |
format |
article |
author |
Ken-Hsien Su Jen-Jui Hsueh Tainsong Chen Fu-Zen Shaw |
author_facet |
Ken-Hsien Su Jen-Jui Hsueh Tainsong Chen Fu-Zen Shaw |
author_sort |
Ken-Hsien Su |
title |
Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity |
title_short |
Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity |
title_full |
Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity |
title_fullStr |
Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity |
title_full_unstemmed |
Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity |
title_sort |
validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3f885e1e74da4662a79641a566068fe1 |
work_keys_str_mv |
AT kenhsiensu validationofeyesclosedrestingalphaamplitudepredictingneurofeedbacklearningofupregulationalphaactivity AT jenjuihsueh validationofeyesclosedrestingalphaamplitudepredictingneurofeedbacklearningofupregulationalphaactivity AT tainsongchen validationofeyesclosedrestingalphaamplitudepredictingneurofeedbacklearningofupregulationalphaactivity AT fuzenshaw validationofeyesclosedrestingalphaamplitudepredictingneurofeedbacklearningofupregulationalphaactivity |
_version_ |
1718377793606123520 |